Abstract:
In various embodiments, a sensor device is provided. The sensor includes a sensor receiving portion, a sensor arranged in the sensor receiving portion and a cap covering the sensor and the sensor receiving portion. The cap includes a plurality of recesses in the inner side wall of the cap for reducing the pressure measured by the sensor.
Abstract:
There is provided a monolithically integrated multimodal sensor device for intracranial neuromonitoring, the sensor device including: a single substrate; a temperature sensor formed on a first portion of the single substrate for detecting temperature; a pressure sensor formed on a second portion of the single substrate for detecting intracranial pressure; and an oxygen sensor formed on a third portion of the single substrate for detecting oxygen concentration. In particular, sensing portions of the temperature sensor, the oxygen sensor and the pressure sensor, respectively, are formed at different layers of the sensor device. There is also provided an integrated multimodal sensor system incorporating the sensor device and the associated methods of fabrication.
Abstract:
According to embodiments of the present invention, a transducer is provided. The transducer includes a substrate, and a diaphragm suspended from the substrate, wherein the diaphragm is displaceable in response to an acoustic signal impinging on the diaphragm, wherein the transducer is configured, in a first mode of operation, to determine a direction of the acoustic signal based on a first displacement of the diaphragm in the first mode of operation, and to decide to accept or reject the acoustic signal based on at least one predetermined parameter and the determined direction of the acoustic signal, and in a second mode of operation, to sense the acoustic signal based on a second displacement of the diaphragm in the second mode of operation if the acoustic signal is accepted in the first mode of operation.
Abstract:
A radiation sensor is provided. The radiation sensor includes a substrate; a diaphragm positioned over the substrate; an absorbing layer which is configured to absorb infrared radiation; a supporting element arranged between the absorbing layer and the diaphragm such that a spacing gap is formed between the absorbing layer and the diaphragm; wherein the size of the spacing gap is in a range of about 3.6 micrometer to about 100 micrometer.