Abstract:
A substrate processing system is disclosed which includes a substrate input/output chamber coupled to a transfer chamber, and one or more processing chambers coupled to the transfer chamber, wherein the substrate input/output chamber includes a plurality of stacked carrier holders, and a platen, wherein the platen includes a plurality of alignment pads and a plurality of openings formed in a recessed flange along a peripheral edge of the platen.
Abstract:
In one embodiment, a substrate support assembly includes a susceptor for supporting a substrate, and a supporting transfer mechanism coupled to the susceptor, the supporting transfer mechanism having a surface for supporting a peripheral edge of the substrate, the supporting transfer mechanism being movable relative to an upper surface of the susceptor.
Abstract:
A substrate processing system is disclosed which includes a processing chamber comprising a susceptor having a first surface and a second surface opposite to the first surface, a groove formed in the first surface adjacent to a perimeter thereof, and a substrate support structure including a plurality of carrier lift pins, each of the plurality of carrier lift pins movably disposed in an opening formed from the second surface to the first surface, wherein the opening is recessed from the groove.
Abstract:
In one aspect, a process operation is conducted at a first pressure in a process chamber, and an epitaxial deposition operation is conducted at an atmospheric pressure in an epitaxial deposition chamber. The atmospheric pressure is greater than the first pressure. The process chamber is mounted to a first mainframe that operates at the first pressure (a reduced pressure), and the epitaxial deposition chamber is mounted to a second mainframe that operates at the atmospheric chamber. In one aspect, the process chamber is a cleaning chamber (such as a pre-clean chamber) and the process operation is a cleaning operation. In one aspect, the process chamber is an atmospheric pressure epitaxial deposition chamber and the process operation is an atmospheric pressure epitaxial deposition operation.
Abstract:
A substrate processing system is disclosed which includes a processing chamber comprising a susceptor having a first surface and a second surface opposite to the first surface, a groove formed in the first surface adjacent to a perimeter thereof, and a substrate support structure including a plurality of carrier lift pins, each of the plurality of carrier lift pins movably disposed in an opening formed from the second surface to the first surface, wherein the opening is recessed from the groove.
Abstract:
A substrate processing system is disclosed which includes a processing chamber comprising a susceptor having a first surface and a second surface opposite to the first surface, a groove formed in the first surface adjacent to a perimeter thereof, and a substrate support structure including a plurality of carrier lift pins, each of the plurality of carrier lift pins movably disposed in an opening formed from the second surface to the first surface, wherein the opening is recessed from the groove.
Abstract:
Methods and apparatus for determining an endpoint of a process chamber cleaning process are provided. In some embodiments, a method of monitoring a process being performed in a process chamber includes: performing a cleaning process in a process chamber to remove material deposited on one or more internal surfaces of the process chamber resultant from processes performed within the process chamber; shining a light on a first internal surface being cleaned; detecting the light reflected off of the first internal surface; and terminating the cleaning process based upon the detected light.
Abstract:
Embodiments of the invention generally relate to susceptor support shafts and process chambers containing the same. A susceptor support shaft supports a susceptor thereon, which in turn, supports a substrate during processing. The susceptor support shaft reduces variations in temperature measurement of the susceptor and/or substrate by providing a consistent path for a pyrometer focal beam directed towards the susceptor and/or substrate, even when the susceptor support shaft is rotated. The susceptor support shafts also have a relatively low thermal mass which increases the ramp up and ramp down rates of a process chamber. In some embodiments, a custom made refractive element can be removably placed on the top of the solid disc to redistribute secondary heat distributions across the susceptor and/or substrate for optimum thickness uniformity of epitaxy process.
Abstract:
Embodiments of the invention generally relate to susceptor support shafts and process chambers containing the same. A susceptor support shaft supports a susceptor thereon, which in turn, supports a substrate during processing. The susceptor support shaft reduces variations in temperature measurement of the susceptor and/or substrate by providing a consistent path for a pyrometer focal beam directed towards the susceptor and/or substrate, even when the susceptor support shaft is rotated. The susceptor support shafts also have a relatively low thermal mass which increases the ramp up and ramp down rates of a process chamber. In some embodiments, a custom made refractive element can be removably placed on the top of the solid disc to redistribute secondary heat distributions across the susceptor and/or substrate for optimum thickness uniformity of epitaxy process.
Abstract:
One implementation provides a method including providing a substrate into a processing chamber through a loading port, rotating the substrate clockwise, providing a gas mixture into a processing region through an inject insert comprising a first, second, and third sets of inject inlets, wherein the first set of inject inlets creates an inner zone inside the processing region, the second set of inject inlets creates a middle zone radially outward of the inner zone, and the third set of inject inlets creates an outer zone radially outward the middle zone, the gas mixture is provided by flowing the gas mixture through the first and second sets of inject inlets, and inject inlets of the third set of inject inlets that are away from the loading port, while blocking flow of the gas mixture into inject inlets of the third set of inject inlets that are closer to the loading port.