Abstract:
Various implementations described herein are related to a device having a memory cell with logic that is configured to store data and passgates that are configured to access the data stored in the logic. The device may include a first number of input-output ports that are time-multiplexed with the passgates so as to increase the first number of input-output ports to a second number of input-output ports that is greater than the first number of input-output ports.
Abstract:
A memory device includes an array of memory cells arranged as a plurality of rows and columns, a plurality of word lines, each word line being coupled to an associated row of memory cells, and a plurality of bit lines, each bit line being coupled to an associated column of memory cells. Access circuitry is coupled to the word lines and the bit lines in order to perform access operations in respect of selected memory cells within the array. Control circuitry controls operation of the access circuitry and includes self-timed path (STP) delay circuitry. The control circuitry employs the delay indication when controlling the access circuitry to perform said access operations. Voltage supply control circuitry switches the voltage supply to at least one portion of the STP delay circuitry between a peripheral voltage supply and an array voltage supply dependent on a control signal.
Abstract:
Various implementations described herein refer to a device having an address bus that provides multi-port addresses from multiple ports including a first address from a first port and a second address from a second port. The device may have column contention-detection circuitry that receives the multi-port addresses from the address bus, compares the first address from the first port with the second address from the second port and provides a contention adjustment signal based on the comparison between the first address and the second address. The device may have bitline collision circuitry that receives the contention adjustment signal, senses wire-to-wire variation related to bitline coupling effects and provides a bitline collision signal based on sensing the bitline coupling effects.
Abstract:
Various implementations described herein are directed to an integrated circuit having level shift circuitry that receives a clock signal in a first voltage domain from a first voltage supply and provides a level shifted clock signal in a second voltage domain based on a second voltage supply that is different than the first voltage supply. The integrated circuit may include clock generator pulse circuitry that receives the clock signal in the first voltage domain from the first voltage supply and receives the level shifted clock signal in the second voltage domain from the level shift circuitry.
Abstract:
Various implementations described herein are directed to an integrated circuit having core circuitry with an array of memory cells arranged in columns. The integrated circuit may include write assist circuitry having a column selector that accesses the memory cells via a bitline coupled to each of the columns. The write assist circuitry may include a first node that couples the column selector to a discharge circuit and a feedback circuit. The write assist circuitry may include a second node that couples a trigger circuit to the discharge circuit and the feedback circuit. The trigger circuit enables the discharge circuit, discharges the second node, and is disabled after discharging the second node. The discharge circuit discharges the first node, and the feedback circuit tracks the first node and disables the discharge circuit.
Abstract:
Various implementations described herein are directed to a device having memory architecture with an array of memory cells arranged in multiple columns with redundancy including first columns of memory cells disposed in a first region along with second columns of memory cells and redundancy columns of memory cells disposed in a second region that is laterally opposite the first region. The device may have column shifting logic that is configured to receive data from the multiple columns, shift the data from the first columns in the first region to a first set of the redundancy columns in the second region, and shift data from the second columns in the second region to a second set of the redundancy columns in the second region.
Abstract:
Various implementations described herein are directed to an integrated circuit having a wordline driver coupled to a bitcell via a wordline. The integrated circuit may include a read assist transistor coupled to the wordline between the wordline driver and the bitcell. While activated, the read assist transistor may generate an adaptive underdrive on the wordline, the level of which depends on the process, temperature and voltage of operation of the memory, when the wordline is selected and driven by the wordline driver.
Abstract:
Various implementations described herein are directed to an integrated circuit having a wordline driver coupled to a bitcell via a wordline. The integrated circuit may include a read assist transistor coupled to the wordline between the wordline driver and the bitcell. While activated, the read assist transistor may generate an adaptive underdrive on the wordline, the level of which depends on the process, temperature and voltage of operation of the memory, when the wordline is selected and driven by the wordline driver.
Abstract:
Various implementations described herein are directed to a device having memory architecture with an array of memory cells arranged in multiple columns with redundancy including first columns of memory cells disposed in a first region along with second columns of memory cells and redundancy columns of memory cells disposed in a second region that is laterally opposite the first region. The device may have column shifting logic that is configured to receive data from the multiple columns, shift the data from the first columns in the first region to a first set of the redundancy columns in the second region, and shift data from the second columns in the second region to a second set of the redundancy columns in the second region.
Abstract:
Various implementations described herein are directed to an integrated circuit having a wordline driver coupled to a bitcell via a wordline. The integrated circuit may include a read assist transistor coupled to the wordline between the wordline driver and the bitcell. While activated, the read assist transistor may generate an adaptive underdrive on the wordline, the level of which depends on the process, temperature and voltage of operation of the memory, when the wordline is selected and driven by the wordline driver.