Abstract:
A method of determining a control setting for a lithographic apparatus. The method includes obtaining a first correction for a current layer on a current substrate based on first metrology data associated with one or more previous substrates, and obtaining a second correction for the current layer on the current substrate. The second correction is based on a residual determined based on second metrology data associated with a previous layer on the current substrate. The method further includes determining the control setting for the lithographic apparatus for patterning the current layer on the current substrate by combining the first correction and the second correction.
Abstract:
A method including: determining first error information based on a first measurement and/or simulation result pertaining to a first patterning device in a patterning system; determining second error information based on a second measurement and/or simulation result pertaining to a second patterning device in the patterning system; determining a difference between the first error information and the second error information; and creating modification information for the first patterning device and/or the second patterning device based on the difference between the first error information and the second error information, wherein the difference between the first error information and the second error information is reduced to within a certain range after the first patterning device and/or the second patterning device is modified according to the modification information.
Abstract:
A method including determining a position of a first pattern in each of a plurality of target portions on a substrate, based on a fitted mathematical model, wherein the first pattern includes at least one alignment mark, wherein the mathematical model is fitted to a plurality of alignment mark displacements (dx, dy) for the alignment marks in the target portions, and wherein the alignment mark displacements are a difference between a respective nominal position of the alignment mark and measured position of the alignment mark; and transferring a second pattern onto each of the target portions, using the determined position of the first pattern in each of the plurality of target portions, wherein the mathematical model includes polynomials Z1 and Z2: Z1=r2 cos(2θ) and Z2=r2 sin(2θ) in polar coordinates (r, θ) or Z1=x2−y2 and Z2=xy in Cartesian coordinates (x, y).
Abstract:
A method of determining a characteristic of one or more processes for manufacturing features on a substrate, the method including: obtaining image data of a plurality of features on a least part of at least one region on a substrate; using the image data to obtain measured data of one or more dimensions of each of at least some of the plurality of features; determining a statistical parameter that is dependent on the variation of the measured data of one or more dimensions of each of at least some of the plurality of features; determining a probability of defective manufacture of features in dependence on a determined number of defective features in the image data; and determining the characteristic of the one or more processes to have the probability of defective manufacture of features and the statistical parameter.
Abstract:
Performance measurement targets are used to measure performance of a lithographic process after processing a number of substrates. In a set-up phase, the method selects an alignment mark type and alignment recipe from among a plurality of candidate mark types by reference to expected parameters of the patterning process. After exposing a number of test substrates using the patterning process, a preferred metrology target type and metrology recipe are selected by comparing measured performance (e.g. overlay) of performance of the patterning process measured by a reference technique. Based on the measurements of position measurement marks and performance measurement targets after actual performance of the patterning process, the alignment mark type and/or recipe may be revised, thereby co-optimizing the alignment marks and metrology targets. Alternative run-to-run feedback strategies may also be compared during subsequent operation of the process.
Abstract:
A method of determining a characteristic of one or more processes for manufacturing features on a substrate, the method including: obtaining image data of a plurality of features on a least part of at least one region on a substrate; using the image data to obtain measured data of one or more dimensions of each of at least some of the plurality of features; determining a statistical parameter that is dependent on the variation of the measured data of one or more dimensions of each of at least some of the plurality of features; determining a probability of defective manufacture of features in dependence on a determined number of defective features in the image data; and determining the characteristic of the one or more processes to have the probability of defective manufacture of features and the statistical parameter.
Abstract:
An apparatus and method for performing a measurement operation on a substrate in accordance with one or more substrate alignment models. The one or more substrate alignment models are selected from a plurality of candidate substrate alignment models. The apparatus, which may be a lithographic apparatus, includes an external interface which enables selection of the substrate alignment model(s) and/or alteration of the substrate alignment model(s) prior to the measurement operation.
Abstract:
Disclosed is an apparatus and method for performing a measurement operation on a substrate in accordance with one or more substrate alignment models. The one or more substrate alignment models are selected from a plurality of candidate substrate alignment models. The apparatus, which may be a lithographic apparatus, includes an external interface which enables selection of the substrate alignment model(s) and/or alteration of the substrate alignment model(s) prior to the measurement operation.
Abstract:
A lithography system configured to apply a pattern to a substrate, the system including a lithography apparatus configured to expose a layer of the substrate according to the pattern, and a machine learning controller configured to control the lithography system to optimize a property of the pattern, the machine learning controller configured to be trained on the basis of a property measured by a metrology unit configured to measure the property of the exposed pattern in the layer and/or a property associated with exposing the pattern onto the substrate, and to correct lithography system drift by adjusting one or more selected from: the lithography apparatus, a track unit configured to apply the layer on the substrate for lithographic exposure, and/or a control unit configured to control an automatic substrate flow among the track unit, the lithography apparatus, and the metrology unit.
Abstract:
A system includes an illumination system, an optical element, a switching element and a detector. The illumination system includes a broadband light source that generates a beam of radiation. The dispersive optical element receives the beam of radiation and generates a plurality of light beams having a narrower bandwidth than the broadband light source. The optical switch receives the plurality of light beams and transmits each one of the plurality of light beams to a respective one of a plurality of alignment sensor of a sensor array. The detector receives radiation returning from the sensor array and to generate a measurement signal based on the received radiation.