摘要:
An improvement of a baseline method for depositing a coating on a device having a surface where the surface includes a first portion and a second portion, where the second portion is in a shadow zone, and where the coating is deposited using a first predetermined set of process parameters having a first ratio of a thickness of the coating on the second portion to a thickness of the coating on the first portion. In the improved method, the coating is deposited using a second predetermined set of process parameters such that the coating substantially conforms to a profile of the device and a second ratio of a thickness of the coating on the second portion to a thickness of the coating on the first portion is greater than the first ratio. The method is a single, commercially advantageous deposition process, enabling increased product throughput and low process tact time.
摘要:
In a method for depositing a barrier coating, a device is provided comprising a first portion and a second portion where a surface of the second portion is in a shadow zone. The device is pretreated wherein the pretreating alters a deposition rate of the barrier coating on a surface exposed to the pretreating. The shadow zone is substantially unexposed to the pretreating. A barrier coating is deposited wherein the barrier coating substantially conforms to a profile of the device. The coating may be a graded-composition barrier coating wherein a composition of the coating varies substantially continuously across a thickness thereof. The first portion may include a flexible, substantially transparent substrate. The second portion may include an electronic device. The barrier coating and first portion may encapsulate the second portion. The method is a single, commercially advantageous, barrier deposition process, enabling increased product throughput and low process tact time.
摘要:
The present techniques provide systems and methods for protecting electronic devices such as organic light emitting devices (OLEDs) from adverse environmental effects using a thin film encapsulation with reduced process time. In some embodiments, the process time of forming a graded barrier over the OLED structure may take less than 5 minutes, and may result in substantially similar barrier properties as those of metal and epoxy sealants and/or typical thin film encapsulations. The process time of forming the barrier may be reduced by increasing deposition rates for organic and/or inorganic materials, reducing the thicknesses of organic and/or inorganic layers, and/or varying the number of zones in the barrier.
摘要:
The present techniques provide systems and methods for protecting electronic devices, such as organic light emitting devices (OLEDs) from adverse environmental effects. The edges of the devices may also be protected by a edge protection coating to reduce the adverse affects of a lateral ingress of adverse environmental conditions. In some embodiments, inorganic materials, or a combination of inorganic and organic materials, are deposited over the device to form a edge protection coating which extends approximately 3 millimeter or less beyond the edges of the device. In other embodiments, the device may be encapsulated with an organic region, and with an inorganic region, or the device may be encapsulated with inorganic materials, which may form the edge protection coating and may be combined with ultra high barrier technology. The coatings formed over the device may extend beyond the edges of the device to ensure lateral protection.
摘要:
The present techniques provide systems and methods for protecting electronic devices, such as organic light emitting devices (OLEDs) from adverse environmental effects. The edges of the devices may also be protected by a edge protection coating to reduce the adverse affects of a lateral ingress of adverse environmental conditions. In some embodiments, inorganic materials, or a combination of inorganic and organic materials, are deposited over the device to form a edge protection coating which extends approximately 3 millimeter or less beyond the edges of the device. In other embodiments, the device may be encapsulated with an organic region, and with an inorganic region, or the device may be encapsulated with inorganic materials, which may form the edge protection coating and may be combined with ultra high barrier technology. The coatings formed over the device may extend beyond the edges of the device to ensure lateral protection.
摘要:
The present techniques provide systems and methods for protecting electronic devices such as organic light emitting devices (OLEDs) from adverse environmental effects using a thin film encapsulation with reduced process time. In some embodiments, the process time of forming a graded barrier over the OLED structure may take less than 5 minutes, and may result in substantially similar barrier properties as those of metal and epoxy sealants and/or typical thin film encapsulations. The process time of forming the barrier may be reduced by increasing deposition rates for organic and/or inorganic materials, reducing the thicknesses of organic and/or inorganic layers, and/or varying the number of zones in the barrier.
摘要:
Present embodiments are directed to a system and method for condensing and curing organic materials within a deposition chamber. Present embodiments may include condensing an organic component from a gas phase into a liquid phase on a target surface within the deposition chamber, wherein the gas phase of the organic component might be mixed with an inert gas. Further, present embodiments may include solidifying the liquid phase of the organic component into a solid phase within the deposition chamber using an inert plasma formed from the inert gas.
摘要:
A method of manufacturing semiconductor assemblies is provided. The manufacturing method includes thermally processing a first semiconductor assembly comprising a first semiconductor layer disposed on a first support and thermally processing a second semiconductor assembly comprising a second semiconductor layer disposed on a second support. The first and second semiconductor assemblies are thermally processed simultaneously, and the first and second semiconductor assemblies are arranged such that the first semiconductor layer faces the second semiconductor layer during the thermal processing.
摘要:
Present invention provides a film and an article including the film. The film includes first layer, second layer and third layer. The first layer includes a polymer dielectric material. The second layer is disposed on at least one surface of the first layer and includes inorganic oxide dielectric material. The third layer is disposed on the first or second layer and includes a nitride or oxynitride material.
摘要:
A processing apparatus for use in a corrosive operating environment at a temperature range of 25-1500° C. is provided. The apparatus has protective coating structure that includes a glassy material. The glassy material includes at least one of yttrium, cerium, or gadolinium; and aluminum and silicon. The coating composition resists etching by a harsh environment.