摘要:
The present invention reduces the capacitance components of pads to improve high frequency characteristics. An optical module includes a light emitting element having an electrode to which a bias current is supplied, an interconnect substrate on which an interconnect pattern is formed to supply the bias current, and a ferrite bead inductor having one terminal connected to a pad connected to the electrode using a bonding wire and the other terminal connected to a pad as the interconnect pattern.
摘要:
A method of fabricating a semiconductor optical device is disclosed. This semiconductor optical device includes first and second optical semiconductor elements. This method comprises the steps of: growing, in a metal-organic vapor phase deposition reactor, plural semiconductor layers for the first semiconductor optical element on a primary surface of a substrate which has first and second areas for the first semiconductor optical element and the second optical semiconductor element, respectively; forming an insulating mask on the plural semiconductor layers and the first area; etching the plural semiconductor layers by use of the insulating mask to form a semiconductor portion having an end face; growing a layer of a first semiconductor on the second area and deposit of the first semiconductor on the end face in the reactor by use of the insulating mask; supplying etchant for etching the first semiconductor to remove at least a part of the deposit of the first semiconductor on the end face by use of the insulating mask; and after removing the deposit of the first semiconductor, growing a layer of a second semiconductor for the second optical element on the second area in the reactor by use of the insulating mask.
摘要:
The invention discloses a method of producing on a substrate a semiconductor optical device having a laser diode and an EA optical modulator. An etched side face of a first semiconductor portion is formed. Then, for example, a first optical confinement layer and an active layer both for the EA optical modulator are grown by the metal organic vapor phase epitaxy method. The first optical confinement layer is grown by supplying hydrogen chloride in addition to a material gas. When the first optical confinement layer is grown, the formation of a thick semiconductor layer along the etched side face, which is an abnormally grown semiconductor layer, is decreased. Subsequently, the active layer for the EA optical modulator is grown. This method can suppress the active layer for the EA optical modulator from bending caused by the abnormally grown semiconductor layer.
摘要:
An integrated optical device comprising a first semiconductor optical element provided on a first region of the main face of a substrate and a second semiconductor optical element provided on a second region and optically coupled to the first semiconductor optical element is fabricated. A first III-V compound semiconductor layer containing Al element is formed on the main face. A second III-V compound semiconductor layer for forming the first semiconductor optical element is then formed on the first III-V compound semiconductor layer. An etching mask M is formed on the first region. The end point of the dry etching is detected by using the etching mask M to dry-etch the second III-V compound semiconductor layer while detecting Al element. The first semiconductor optical element is thus formed. The second semiconductor optical element is formed on the second region.
摘要:
The present invention provides a structure of a light-emitting device which prevents the inter diffusion of impurities from the high-doped n-type InP substrate to a p-type current blocking layer. The substrate of the invention is highly doped with sulfur (S) to obtain high quality surface whose etch pit density (EPD) is less than 100 cm−2. The device includes such substrate, an optical guiding portion with an active layer, and a current blocking portion provided so as to bury the guiding portion. This current blocking portion includes, from the side of the substrate, a p-type layer, an n-type layer and another p-type layer. The device of the invention provides an n-type layer that is moderately doped with silicon between the n-type substrate and the p-type current blocking layer to prevent the inter diffusion of impurities from the substrate to the p-type layer.
摘要:
The invention discloses a method of producing on a substrate a semiconductor optical device having a laser diode and an EA optical modulator. An etched side face of a first semiconductor portion is formed. Then, for example, a first optical confinement layer and an active layer both for the EA optical modulator are grown by the metal organic vapor phase epitaxy method. The first optical confinement layer is grown by supplying hydrogen chloride in addition to a material gas. When the first optical confinement layer is grown, the formation of a thick semiconductor layer along the etched side face, which is an abnormally grown semiconductor layer, is decreased. Subsequently, the active layer for the EA optical modulator is grown. This method can suppress the active layer for the EA optical modulator from bending caused by the abnormally grown semiconductor layer.
摘要:
The present invention provides a structure of a light-emitting device which prevents the inter diffusion of impurities from the high-doped n-type InP substrate to a p-type current blocking layer. The substrate of the invention is highly doped with sulfur (S) to obtain high quality surface whose etch pit density (EPD) is less than 100 cm−2. The device includes such substrate, an optical guiding portion with an active layer, and a current blocking portion provided so as to bury the guiding portion. This current blocking portion includes, from the side of the substrate, a p-type layer, an n-type layer and another p-type layer. The device of the invention provides an n-type layer that is moderately doped with silicon between the n-type substrate and the p-type current blocking layer to prevent the inter diffusion of impurities from the substrate to the p-type layer.
摘要:
The process of the present invention to form a mask made of inorganic material containing silicon reduces the plasma damage induced in the semiconductor layers due to the plasma-ashing. The semiconductor material is heat-treated at a high temperature after the growth thereof to form an oxide layer positively in the surface of the semiconductor material before it is covered by the silicon inorganic film. This inorganic film is dry-etched by an etchant containing fluorine to get a mask for forming a mesa and for growing burying layer selectively.
摘要:
A semiconductor light-emitting device with a new layer structure is disclosed, where the current leaking path is not caused to enhance the current injection efficiency within the active layer. The device provides a mesa structure containing active layer and a p-type lower cladding layer on a p-type substrate and a burying layer doped with iron (Fe) to bury the mesa structure, where the burying layer shows a semi-insulating characteristic. The device also provides an n-type blocking layer arranged so as to cover at least a portion of the p-type buffer lower within the mesa structure. The n-type blocking layer prevents the current leaking from the burying layer to the p-type buffer layer, and the semi-insulating burying layer that covers the rest portion of the mesa structure not covered by the n-type blocking layer prevents the current leaking from the n-type blocking layer to the n-type cladding layer within the mesa structure.
摘要:
A semiconductor light-emitting device with a new layer structure is disclosed, where the current leaking path is not caused to enhance the current injection efficiency within the active layer. The device provides a mesa structure containing active layer and a p-type lower cladding layer on a p-type substrate and a burying layer doped with iron (Fe) to bury the mesa structure, where the burying layer shows a semi-insulating characteristic. The device also provides an n-type blocking layer arranged so as to cover at least a portion of the p-type buffer lower within the mesa structure. The n-type blocking layer prevents the current leaking from the burying layer to the p-type buffer layer, and the semi-insulating burying layer that covers the rest portion of the mesa structure not covered by the n-type blocking layer prevents the current leaking from the n-type blocking layer to the n-type cladding layer within the mesa structure.