摘要:
A semiconductor device of the present invention includes: a semiconductor layer; a gate insulation film provided on the semiconductor layer and including at least one of Hf and Zr; and a gate electrode provided on the gate insulation film and including a carbonitride which includes at least one of Hf and Zr.
摘要:
According to the present invention, there is provided a semiconductor device comprising: a gate insulating film selectively formed on a predetermined region of a semiconductor substrate; a gate electrode formed on said gate insulating film; and a source region and drain region formed, in a surface portion of said semiconductor substrate, on two sides of a channel region positioned below said gate electrode, wherein a carbon concentration in an interface where said gate insulating film is in contact with said gate electrode is not more than 5×1022 atoms/cm3.
摘要:
A semiconductor device according to the present invention comprises a semiconductor substrate, a gate insulating film which is composed of a material whose main component is a tetravalent metal oxide, a mixture of a tetravalent metal oxide and SiO2, or a mixture of a tetravalent metal oxide and SiON and which containing B when it is in an nMOS structure on the semiconductor substrate or containing at least one of P and As when it is in a pMOS structure on the semiconductor substrate, and a gate electrode made of a metal having a work function of 4 eV to 5.5 eV.
摘要:
A method of fabricating a semiconductor device according to one embodiment includes: forming a SiGe crystal layer on a semiconductor substrate, the SiGe crystal layer having a first plane and a second plane inclined with respect to the first plane; forming an amorphous Si film on the SiGe crystal layer; crystallizing a portion located adjacent to the first and second planes of the amorphous Si film by applying heat treatment using the first and second planes of the SiGe crystal layer as a seed, thereby forming a Si crystal layer; selectively removing or thinning a portion of the amorphous Si film that is not crystallized by the heat treatment; applying oxidation treatment to a surface of the Si crystal layer, thereby forming a gate insulating film on the surface of the Si crystal layer; and forming a gate electrode on the gate insulating film.
摘要:
A semiconductor device according to the present invention comprises a semiconductor substrate, a gate insulating film which is composed of a material whose main component is a tetravalent metal oxide, a mixture of a tetravalent metal oxide and SiO2, or a mixture of a tetravalent metal oxide and SiON and which containing B when it is in an nMOS structure on the semiconductor substrate or containing at least one of P and As when it is in a pMOS structure on the semiconductor substrate, and a gate electrode made of a metal having a work function of 4 eV to 5.5 eV.
摘要:
A semiconductor apparatus wherein a device formed on a semiconductor substrate comprises a gate insulating film including a high dielectric constant film formed on the substrate and an anti-reaction film formed on the high dielectric constant film, and a gate electrode formed on the anti-reaction film, the high dielectric constant film comprises a film containing at least one of Hf and Zr, and Si and O, or a film containing at least one of Hf and Zr, and Si, O and N, the anti-reaction film comprises an SiO2 film, a film containing SiO2 as a main component and at least one of Hf and Zr, a film containing SiO2 as a main component and N, a film containing SiO2 as a main component, Hf and N, a film containing SiO2 as a main component, Zr and N, or a film containing SiO2 as a main component, Hf, Zr and N.
摘要:
According to the present invention, there is provided a semiconductor device comprising:an interface insulating film selectively formed on a predetermined region of a semiconductor substrate, and having a film thickness of substantially one atomic layer;a gate insulating film formed on said interface insulating film, and having a dielectric constant higher than that of said interface insulating film;a gate electrode formed on said gate insulating film; andsource and drain regions formed in a surface region of said semiconductor substrate on two sides of a channel region positioned below said gate electrode.
摘要:
According to the present invention, there is provided a semiconductor device fabrication method comprising: measuring light emission intensity of at least one type of wavelength contained in light emitted from a plasma, when one of nitriding, oxidation, and impurity doping is to be performed on a surface of a semiconductor substrate in a processing vessel by using the plasma; calculating, for each semiconductor substrate, an exposure time during which the semiconductor substrate is exposed to the plasma, on the basis of the measured light emission intensity; and exposing each semiconductor substrate to the plasma on the basis of the calculated exposure time, thereby performing one of the nitriding, oxidation, and impurity doping.
摘要:
According to the present invention, there is provided a semiconductor device comprising: an interface insulating film selectively formed on a predetermined region of a semiconductor substrate, and having a film thickness of substantially one atomic layer; a gate insulating film formed on said interface insulating film, and having a dielectric constant higher than that of said interface insulating film; a gate electrode formed on said gate insulating film; and source and drain regions formed in a surface region of said semiconductor substrate on two sides of a channel region positioned below said gate electrode.
摘要:
A method of fabricating a semiconductor device according to one embodiment includes: forming a SiGe crystal layer on a semiconductor substrate, the SiGe crystal layer having a first plane and a second plane inclined with respect to the first plane; forming an amorphous Si film on the SiGe crystal layer; crystallizing a portion located adjacent to the first and second planes of the amorphous Si film by applying heat treatment using the first and second planes of the SiGe crystal layer as a seed, thereby forming a Si crystal layer; selectively removing or thinning a portion of the amorphous Si film that is not crystallized by the heat treatment; applying oxidation treatment to a surface of the Si crystal layer, thereby forming a gate insulating film on the surface of the Si crystal layer; and forming a gate electrode on the gate insulating film.