摘要:
A buried heterojunction semiconductor laser appropriate for integration with other electronic circuitry and method of producing same, in which the width of a central stripe of the active region can be reduced beyond the physical size limitations of the connecting electrode so as to allow the semiconductor laser to oscillate in a stable manner and with low threshold current. The semiconductor laser is provided with a portion of the surface of the upper cladding layer located above the disordered active layer regions electrically connected with the upper cladding layer located above the nondisordered central stripe. As a result, the central stripe electrode can be of a width larger than that of the central stripe itself.
摘要:
A semiconductor laser device includes a p type semiconductor substrate, an active layer having a smaller energy band gap than the p type semiconductor substrate and an n type semiconductor layer having a larger energy band gap than the active layer successively formed on the p type semiconductor substrate, a mesa formed by selectively etching the semiconductor substrate, active layer, and n type semiconductor layer, p-n-p layers having larger energy band gaps than the active layer and disposed at both sides of the mesa, a small energy band gap layer having a smaller energy band gap than the p type semiconductor substrate and disposed on the p-n-p layers, and an n type semiconductor layer disposed on the small energy band gap layer and on the n type semiconductor layer. The small energy band gap layers decrease the current flowing through the thyristor structure and are disposed close to the active region but in a different processing step from the formation of the active layer. A waveguide structure in which the active layer is surrounded by semiconductor layers having larger energy band gaps is realized.
摘要:
A buried heterojunction semiconductor laser appropriate for integration with other electronic circuitry and method of producing same, in which the width of a central stripe of the active region can be reduced beyond the physical size limitations of the connecting electrode so as to allow the semiconductor laser to oscillate in a stable manner and with low threshold current. The semiconductor laser is provided with a portion of the surface of the upper cladding layer located above the disordered active layer regions electrically connected with the upper cladding layer located above the nondisordered central stripe. As a result, the central stripe electrode can be of a width larger than that of the central stripe itself.
摘要:
A semiconductor light emitting device includes a semiconductor light emitting element mounted on a package stem via a radiating heatsink block, the light emitting point of the light emitting element being positioned on the central axis of the stem and at or near the center of mass of the heatsink block. Another light emitting device includes a light emitting element mounted on a stem via a heatsink block, the light emitting point of the element being positioned on the central axis of the stem with only a portion of a lower surface of the heatsink block close to the central axis of the stem attached to the stem. The movement of the light emitting point with temperature variations is suppressed. Another light emitting device includes a laser chip element mounted on a package stem via a heatsink block, the laser chip element being mounted on the heatsink block so that the emitted light forms an angle .theta. with a surface of the stem and the position and angle of the emitted light do not vary when the temperature changes.
摘要:
A method of making a semiconductor optical device, including an integrated laser diode and optical waveguide lens with a continuous resonator extending along a resonator length direction between a pair of resonator facets, includes forming a pair of dielectric films disposed on a surface of a substrate on which a semiconductor layer of the optical waveguide is to be grown, the dielectric films having a linear symmetry about a hypothetical line extending in the resonator length direction, having edges opposing each other and parallel to the hypothetical line, and widths perpendicular to the resonator length direction that gradually narrow toward one facet from a position in the resonator length direction of the films. A mask pattern that produces a precise layer thickness profile is easily designed.
摘要:
In a semiconductor laser module, a semiconductor laser element is disposed on a side surface of a submount perpendicular to a front surface of a pedestal. The semiconductor laser element, the submount, a lens, and an optical fiber are positioned on the front surface of the pedestal so that laser light emitted from the semiconductor laser element is applied through the lens to a prescribed portion of the optical fiber with high reliability. Positioning of the laser element in the direction perpendicular to the front surface of the pedestal is facilitated, and positioning accuracy is improved, resulting in a low-cost and high-performance semiconductor laser module.
摘要:
A semiconductor laser device having an active layer sandwiched by semiconductor layers having larger energy band gaps than that of the active layer, includes a semiconductor absorption layer having an energy band gap no larger than that of the active layer and having a thickness periodically changing in the cavity length direction of the resonator, close to the active layer so that light which is generated at the active layer reaches the absorption layer, and a semiconductor refractive index matching layer, having a larger energy band gap than that of the active layer and a higher refractive index than those of the semiconductor layers sandwiching the active layer, to make the equivalent refractive indices in layer thickness direction substantially equal along the resonator direction.
摘要:
An optical integrated circuit includes a laser diode emitting laser light and a photodiode detecting light emitted from the laser diode on the same semiconductor substrate but not colinear and a mirror optically coupling the laser diode with the photodiode. The axes of the laser diode and the photodiode are parallel. The mirror is parallel to a laser light emitting facet of the laser diode to couple the laser diode and the photodiode. Resonator facets of the laser diode are produced by cleaving, not etching, whereby an optical integrated circuit including a laser diode having high performance and high reliability is obtained.
摘要:
A semiconductor laser device having an active layer sandwiched by semiconductor layers having larger energy band gaps than that of the active layer, includes a semiconductor absorption layer having an energy band gap no larger than that of the active layer and having a thickness periodically changing in the cavity length direction of the resonator close to the active layer so that light which is generated at the active layer reaches the absorption layer, and a semiconductor refractive index matching layer having a larger energy band gap than that of the active layer and a higher refractive index than those of the semiconductor layers sandwiching the active layer to make the equivalent refractive indices in layer thickness direction substantially equal along the resonator direction.
摘要:
An internal combustion engine combusts a first fuel or a second fuel. A method for controlling the engine comprises supplying first fuel to at least one combustion chambers of the internal combustion engine, stopping the supply of the first fuel to the combustion chamber in response to an engine operating condition, and fueling with the second fuel to the at least one combustion chamber after a predetermined period, so as to maintain an engine speed within a predetermined range.