Abstract:
A photodiode structure augmented with active area photosensitive regions is used for detecting impinging radiation. The photodiode includes a semiconductor base layer doped with impurities of a first carrier type, a field oxide layer disposed upon the base layer with an opening formed therethrough, a plurality of auxiliary oxide layers wherein each is separately disposed upon the base layer, and a semiconductor diffusion layer doped with impurities of a second carrier type arranged upon the base layer and in contact with the oxide layers. When the photodiode is electrically energized, a plurality of integral photosensitive regions is created within the depletion region to facilitate the detection of impinging radiation at an increased quantum efficiency.
Abstract:
A variable capacitor in a semiconductor device is described in which the capacitance is varied by the movement of a dielectric material in the space between the plates of the capacitor in response to an external stimulus. A method of making such a variable capacitor is also described in which the capacitor is built in a layered structure with the top layer including a portion of dielectric material extending into the space between the capacitor plates. After formation of the top layer, an intermediate layer is etched away to render the top layer flexible to facilitate movement of the dielectric material in the space between the capacitor plates.
Abstract:
Disclosed is a CMOS image sensor that includes pixels employing a radiation-sensitive resistive element in which the resistance of the element changes in response to the quantity of radiation striking it. The resistive elements are made from an appropriately doped polycrystalline semiconductor material such as polysilicon. The pixels are provided on a semiconductor device in which the photosensitive resistive elements are provided on a first layer and the pixel associated transistors are provided on a second layer. The fill factor may be approach 100 percent for such pixels.
Abstract:
A variable capacitor in a semiconductor device is described in which the capacitance is varied by the movement of a dielectric material in the space between the plates of the capacitor in response to an external stimulus. A method of making such a variable capacitor is also described in which the capacitor is built in a layered structure with the top layer including a portion of dielectric material extending into the space between the capacitor plates. After formation of the top layer, an intermediate layer is etched away to render the top layer flexible to facilitate movement of the dielectric material in the space between the capacitor plates.
Abstract:
An integrated circuit, including a junction barrier Schottky diode, has an N type well, a P-type anode region in the surface of the well, and an N-type Schottky region in the surface of the well and horizontally abutting the anode region. A first silicide layer is on and makes a Schottky contact to the Schottky region and is on an adjoining anode region. A second silicide layer of a different material than the first silicide is on the anode region. An ohmic contact is made to the second silicide on the anode region and to the well.
Abstract:
Embodiments of the present invention are directed to light sensors, that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
Abstract:
A memory array comprises a plurality of memory cells organized in a matrix of rows and columns. Each of the memory cells includes a high voltage access transistor, a floating gate memory transistor electrically connected to the access transistor, and a coupling capacitor electrically connected to the memory transistor. A first set of word lines are each electrically connected to the capacitor in each of the memory cells in a respective row. A second set of word lines are each electrically connected to the access transistor in each of the memory cells in a respective row. A first set of bit lines are each electrically connected to the access transistor in each of the memory cells in a respective column. A second set of bit lines are each electrically connected to the memory transistor in each of the memory cells in a respective column. Various combinations of voltages can be applied to the word lines and bit lines in operations to program, erase, read, or inhibit a logic state stored by the memory transistor in one or more of the memory cells.
Abstract:
A flash memory array comprises a plurality of memory cells organized in a matrix of rows and columns. Each of the memory cells includes a floating gate memory transistor having a source region and a drain region, and a coupling capacitor electrically connected to the memory transistor. A plurality of word lines are each electrically connected to the capacitor in each of the memory cells in a respective row. A first set of bit lines are each electrically connected to the drain region of the memory transistor in each of the memory cells in a respective column. A plurality of high voltage access transistors are each electrically connected to a bit line in the first set of bit lines. A second set of bit lines are each electrically connected to the source region of the memory transistor in each of the memory cells in a respective column. Various combinations of voltages can be applied to the word lines and the first and second sets of bit lines in operations to erase, program, inhibit, or read the logic state stored by the memory transistor in one or more of the memory cells.
Abstract:
A flash memory array comprises a plurality of memory cells organized in a matrix of rows and columns. Each of the memory cells includes a floating gate memory transistor having a source region and a drain region, and a coupling capacitor electrically connected to the memory transistor. A plurality of word lines are each electrically connected to the capacitor in each of the memory cells in a respective row. A first set of bit lines are each electrically connected to the drain region of the memory transistor in each of the memory cells in a respective column. A plurality of high voltage access transistors are each electrically connected to a bit line in the first set of bit lines. A second set of bit lines are each electrically connected to the source region of the memory transistor in each of the memory cells in a respective column. Various combinations of voltages can be applied to the word lines and the first and second sets of bit lines in operations to erase, program, inhibit, or read the logic state stored by the memory transistor in one or more of the memory cells.
Abstract:
A photodiode includes a substrate having a first semiconductor type surface region on at least a portion thereof, and a second semiconductor type surface layer formed in a portion of the surface region. A multi-layer anti-reflective coating (ARC) is on the second semiconductor type surface layer, wherein the multi-layer ARC comprises at least two different dielectric layers. A layer resistant to oxide etch is above a peripheral portion the multi-layer ARC. Further layers are above the layer resistant to oxide etch, and thereby above the peripheral portion the multi-layer ARC. A window extends down to the multi-layer ARC. A photodiode region is formed by a pn-junction of the first semiconductor type surface region and the second semiconductor type surface layer.