摘要:
Integrated circuit designs are continually shrinking in size. Lithographic processes are used to transfer these designs to a semiconductor substrate. These processes typically require that the exposure wavelength of light be shorter than the smallest dimension of the elements within the circuit design. When this is not the case, exposure energy such as light behaves more like a wave than a particle. Additionally, mask manufacturing, photoresist chemical diffusion, and etch effects cause pattern transfer distortions. The result is that circuit elements do not print as designed. To counter this effect the circuit designs themselves can be altered so that the final printed results better matches the initial desired design. The process of altering designs in this way is called Lithographic Proximity Correction (LPC). Square (142), cross (162), octagon (172), and hammerhead (202) serifs are added to integrated circuit designs by shape manipulation functions to perform two dimensional (2-D) LPC.
摘要:
Integrated circuit designs are continually shrinking in size. Lithographic processes are used to pattern these designs onto a semiconductor substrate. These processes typically require that the wavelength of exposure used during printing be significantly shorter than the smallest dimension of the elements within the circuit design. When this is not the case, the exposure radiation behaves more like a wave than a particle. Additionally, mask manufacturing, photoresist chemical diffusion and etch effects cause pattern transfer distortions. The result is that circuit elements do not print as designed. To counter this effect the designs themselves can be altered so that the final printed results better match the initial desired design. The process of altering designs in this way is called Lithographic Proximity Correction (LPC). Edge assist shapes and edge biasing features are added to integrated circuit designs by shape manipulation functions to perform one dimensional (1-D) LPC.
摘要:
A method of patterning a wafer using four areas with differing exposure characteristics is disclosed. Two areas are phase shifted relative to the other two areas in order to create unexposed areas on the integrated circuit. Two different areas have polarizations orthogonal to each other, are frequency shifted relative to the two other areas, or are exposed by light at a time different than the two other areas to form exposed areas on the integrated circuit. The exposed areas are subsequently removed from the integrated circuit. In one embodiment, the four areas are on the same mask. The use of four areas with differing exposure characteristics allows for the patterning of more complicated and smaller geometric patterns on the integrated circuit than traditional patterning methods.
摘要:
A method of radiation induced dry etching of a metallized (e.g. copper) substrate is disclosed wherein the substrate is pattern-wise exposed to a beam of laser radiation in a halogen gas atmosphere which is reactive with the substrate to form a metal halide salt reaction product to accelerate the formation of the metal halide salt without its substantial removal from the substrate. The metal halide salt is removed from the substrate by contact of the substrate with a solvent for the metal halide salt.
摘要:
Very high speed circuits are adversely effected by parasitic capacitances and line resistances. At high speeds these values of capacitance and resistance change with frequency. A method of verification of the design of high speed circuits includes a simulation of the effects of these changes in resistance and capacitance which occur at high frequency. There is a logic component and a physical-layout component which are combined to provide a full simulation of the circuit taking into account these effects which occur at very high frequency. The physical-layout component utilizes Maxwell's equations in their entirety without removing the time dependent effects. One embodiment considers only cases defined by the bus protocol, reducing the computational penalty of complete electromagnetic simulation.
摘要:
A electronics system and method are provided which allow engineering changes to be made to a substrate without requiring the addition of fly wires and without requiring relatively large areas of pads for attaching these wires. Each device site is surrounded by a series of engineering change ring patterns. A series of engineering change patterns allow change interconnections between device sites to be made. Fan-in metallizations extend inwardly to the device sites from these change patterns, with a series of vias making surface connections adjacent to the ring patterns. Fan-out metallizations extend from the device site pads to the ring patterns, with a series of vias making surface connections adjacent to the ring patterns. Engineering changes are made by directly writing surface metal deposits to make the appropriate connections between the vias and the ring pattern. The original chip pad connections and the new ring pattern connections can be appropriately isolated by laser deletions, if necessary.
摘要:
A method and apparatus for making an integrated circuit takes advantage of both polarized and phase shifted light in order to achieve a fine feature. The feature on the integrated circuit is obtained by exposing a first region to light that has a first polarization state, exposing a second portion of the wafer to polarized light in the first polarization state but which is also phase shifted about 180 degrees. A region between the first and second region may be unexposed to light. The region between the first and the second region is the position of the fine feature. In areas where the first region and the second region need to be joined together but no feature is intended to be formed, there is a third region between the first and second regions which is exposed to polarized light that has a second polarization state which is orthogonal to that of the polarized light which exposes the first and second regions. The result is that the boundary between either the first or second region and the third region is fully exposed. Thus there is no artifact or extra feature formed in this boundary area between the first and second regions. Masks are made with corresponding regions to the first, second, and third regions so that the light in these polarized and phase shifted states is properly provided to the integrated circuit.
摘要:
Sealing and stress relief are provided to a low-fracture strength glass-ceramic substrate. Hermeticity is addressed through the use of capture pads in alignment with vias and through polymer overlays with interconnection between the underlying via or pad metallurgy and the device, chip, wire or pin bonded to the surface of the layer. Multilevel structures are taught along with a self-aligned sealing and wiring process.
摘要:
Fine alignment of mask and wafer, using Fresnel zone plates is achieved. Light is focused on the wafer by a zone plate in the mask. Light diffracted from a zone plate on the wafer is received by a sensor. The received light is coded (analog or digital) to indicate alignment. For analog coding the wafer zone plate diffracts light to the sensor from an area of the wafer zone plate which is indicative of alignment. For digital coding, the wafer zone plate is digitally encoded as a function of alignment to similarly code the diffracted light. To eliminate ambiguity, the mask zone plate is formed from a plurality of "elements", each of which is itself a Fresnel zone plate. The focal length of the elemental Fresnel zone plate can be related to the mask/wafer separation distance, whereas the focal length of the macro zone plate (made up of a plurality of the elemental zone plates) is related to the distance between mask and light sensor.
摘要:
In electron beam testing systems wherein high energy, high resolution electron beams are used to test lithographic masks, a technique and apparatus are described for discharging electrons which are left on the surface of the mask, and which alter the input trajectory of the electron beam. The materials used in these masks are such that induced photoconductivity and photoemissivity are extremely low and are incapable of providing sufficient electron discharge. A thin, low work function coating is applied over the entire mask surface, the coating being transparent to the radiation which will later be incident upon the mask when it is used in a fabrication process. Due to induced photoemission in the thin coating layer, enough photoemitted electrons will be produced to balance the buildup of electrons from the electron beam, thereby discharging the surface of the mask. The electron beam is a high energy beam, having energies greater than about 5000 eV, and a resolution less than about 1 micrometer.