Abstract:
A cognitive signal converter adapted to produce a digital output signal based on an analog input signal comprises an analog-to-digital converter (ADC) and a cognitive network. The ADC is adapted to produce a digital converted signal based on the analog input signal, a sample clock signal and a process clock signal by sampling the analog input signal in accordance with the sample clock signal and quantizing each analog input signal sample based on the process clock signal. The cognitive network is adapted to receive the digital converted signal of the ADC, control at least one of the sample clock signal and the process clock signal based on the received digital converted signal and one or more characteristics of the analog signal source, and produce the digital output signal based on the received digital converted signal. Corresponding integrated circuit, electronic device and method are also disclosed.
Abstract:
A time-interleaved analog-to-digital converter for conversion of an analog input signal to a digital output signal having a sample rate R comprises an array of N constituent analog-to-digital converters that operate based on an analog-to-digital converter operation clock to provide the digital output signal, N sample-and-hold units connected to the input of a respective constituent analog-to-digital converter that operate based on a respective one of M of timing signals, wherein no timing signal is used to clock two or more of the sample-and-hold units, one or more digital output processing units that provide a sample of the digital output of a constituent analog-to-digital converter as a sample of the digital output signal based on the respective one of the M timing signals, and a timing circuit that generates the analog-to-digital converter operation clock signal, each timing signal having a period of M/R, wherein M is less or equal to N.
Abstract:
A method of controlling operation of a field-powered biometric device comprising biometric acquisition circuitry, processing circuitry controllable to transition between a first functional state having a first power consumption and a second functional state having a second power consumption lower than the first power consumption, and power management circuitry. The method comprises the steps of monitoring, by the power management circuitry, a property indicative of a supply voltage to the processing circuitry; controlling, when the monitored property indicates that the supply voltage has fallen to a first threshold voltage, the processing circuitry to transition from the first functional state to the second functional state; and controlling, when the monitored property indicates that the supply voltage has increased to a second threshold voltage higher than the first threshold voltage, the processing circuitry to transition from the second functional state to the first functional state.
Abstract:
There is provided a capacitive fingerprint sensing device for sensing a fingerprint pattern of a finger, said capacitive fingerprint sensing device comprising: a protective top layer to be touched by said finger; a first metal layer comprising a two-dimensional array of sensing structures arranged underneath said top layer; a second metal layer, arranged underneath said first metal layer, comprising a plurality of conductive structures a dielectric layer arranged between the first and second metal layers to electrically insulate the first metal layer from the second metal layer, the dielectric layer comprising a low-k material; and readout circuitry arranged underneath said second metal layer and coupled to each of the electrically conductive sensing structures by means of via connections to receive a sensing signal indicative of a distance between said finger and said sensing structure. There is also provided a method for manufacturing such a device.
Abstract:
A fingerprint sensing system comprising a device connection interface including a device reference potential input, a sensing arrangement, and sensing reference potential providing circuitry. The sensing arrangement includes multiple sensing structures and read-out circuitry connected to each of the sensing structures. The sensing reference potential providing circuitry provides a sensing reference potential to the sensing arrangement in the form of a sensing reference signal alternating between a first sensing reference potential and a second sensing reference potential, and comprises a first capacitor; a second capacitor; charging circuitry; and switching circuitry for alternatingly switching the sensing reference potential providing circuitry between a first state in which the first capacitor and the second capacitor are connected in parallel to the charging circuitry; and a second state in which the first capacitor and the second capacitor, when charged, are connected in series between the device reference potential input and the sensing arrangement.
Abstract:
There is provided a capacitive fingerprint sensing device for sensing a fingerprint pattern of a finger, said capacitive fingerprint sensing device comprising: a protective top layer to be touched by said finger; a first metal layer comprising a two-dimensional array of sensing structures arranged underneath said top layer; a second metal layer, arranged underneath said first metal layer, comprising a plurality of conductive structures a dielectric layer arranged between the first and second metal layers to electrically insulate the first metal layer from the second metal layer, the dielectric layer comprising a low-k material; and readout circuitry arranged underneath said second metal layer and coupled to each of the electrically conductive sensing structures by means of via connections to receive a sensing signal indicative of a distance between said finger and said sensing structure. There is also provided a method for manufacturing such a device.
Abstract:
A fingerprint sensing system comprising a device connection interface including a device reference potential input, a sensing arrangement, and sensing reference potential providing circuitry. The sensing arrangement includes multiple sensing structures and read-out circuitry connected to each of the sensing structures. The sensing reference potential providing circuitry provides a sensing reference potential to the sensing arrangement in the form of a sensing reference signal alternating between a first sensing reference potential and a second sensing reference potential, and comprises a first capacitor; a second capacitor; charging circuitry; and switching circuitry for alternatingly switching the sensing reference potential providing circuitry between a first state in which the first capacitor and the second capacitor are connected in parallel to the charging circuitry; and a second state in which the first capacitor and the second capacitor, when charged, are connected in series between the device reference potential input and the sensing arrangement.
Abstract:
A method of operating a time-interleaved analog-to-digital converter for conversion of an analog input signal to a digital output signal having a sample rate R comprises, for each of at least some activations of an array of constituent analog-to-digital converters, defining first and second sets of the constituent analog-to-digital converters, feeding the analog input of each analog-to-digital converter of the first set with a reference value for imperfection measurements and clocking each analog-to-digital converter of the first set with one of the timing signals, feeding the analog input of each of analog-to-digital converter of the second set with the analog input signal for generation of an intermediate constituent digital output signal at the digital output and clocking each analog-to-digital converter of the second set with one of the timing signals, wherein no timing signal is used to clock two or more of analog-to-digital converters of the second set.
Abstract:
A time-interleaved analog-to-digital converter for conversion of L analog input signals to L corresponding digital output signals comprises an array of N (N>L) constituent analog-to-digital converters each having an analog input and a digital output and each adapted to digitize an analog input sample, and a controller adapted to (for each of the L analog input signals indexed by i=1, 2, . . . , L) select a number Ni, of constituent analog-to-digital converters from the array of N constituent analog-to-digital converters (wherein Ni≧1 and Σi=1L Ni≦N), and cause each sample of the analog input signal to be digitized in a respective one of the selected Ni, constituent analog-to-digital converters. The analog-to-digital converter also comprises a multiplexer adapted to (for each of the L analog input signals) multiplex the digitized samples of each of the selected Ni constituent analog-to-digital converters to produce the digital output signal.