摘要:
A system and method for the reduction of NOx emissions from combustion sources are provided. The system includes a fuel tank, fuel converter unit, condensor unit, selective catalytic reduction (SCR) unit and an engine. The condenser unit includes a generally cylindrical inner wall defining a cavity having a first lower end and a second upper end, the first lower end is configured to include a gas inlet for receiving a gas mixture from the fuel converter and the second upper end is configured to include a gas outlet in fluid communication with the SCR unit. A heat exchanger is disposed within the cavity of the condensor unit to contact the gas mixture and separate heavy hydrocarbons from light hydrocarbons, wherein the light hydrocarbons are fed to the SCR unit and the heavy hydrocarbons are condensed and either send back to the fuel tank or directly to the engine for combustion.
摘要:
A system and method for the reduction of NOx emissions from combustion sources are provided. The system includes a fuel tank, fuel converter unit, condensor unit, selective catalytic reduction (SCR) unit and an engine. The condenser unit includes a generally cylindrical inner wall defining a cavity having a first lower end and a second upper end, the first lower end is configured to include a gas inlet for receiving a gas mixture from the fuel converter and the second upper end is configured to include a gas outlet in fluid communication with the SCR unit. A heat exchanger is disposed within the cavity of the condensor unit to contact the gas mixture and separate heavy hydrocarbons from light hydrocarbons, wherein the light hydrocarbons are fed to the SCR unit and the heavy hydrocarbons are condensed and either send back to the fuel tank or directly to the engine for combustion.
摘要翻译:提供了用于从燃烧源减少NO x x排放的系统和方法。 该系统包括燃料箱,燃料转换器单元,冷凝器单元,选择性催化还原(SCR)单元和发动机。 冷凝器单元包括大致圆柱形的内壁,其限定具有第一下端和第二上端的空腔,第一下端构造成包括用于接收来自燃料转换器的气体混合物的气体入口,并且第二上端配置 以包括与SCR单元流体连通的气体出口。 热交换器设置在冷凝器单元的空腔内,以接触气体混合物并将重质烃与轻质烃分离,其中轻烃被供给至SCR单元,并且重质烃被冷凝并且发送回燃料箱或 直接发动机进行燃烧。
摘要:
A method for treating fuel containing vanadium including extracting vanadium from the fuel with an adsorption material and fractionating the fuel into a light oil fraction and a heavy fuel fraction. The light fuel fraction has a reduced amount of vanadium. Systems for fuel preparation are also provided.
摘要:
A system comprising a fuel converter comprising a catalyst composition capable of converting a fuel into a selected one or both of a syngas reductant and a short chain hydrocarbon reductant, wherein the catalyst composition comprises: cracking sites that perform a cracking function when a temperature of an exhaust fluid is greater than a predetermined threshold temperature, wherein the cracking function converts long chain hydrocarbon molecules to short chain hydrocarbon molecules; and partial oxidation sites that perform a catalytic partial oxidation function when the temperature of the exhaust fluid is less than the predetermined threshold temperature, wherein the catalytic partial oxidation function oxidizes the fuel to produce the syngas reductant; and a selective catalytic reduction catalyst reactor in fluid communication with the fuel converter and the exhaust fluid.
摘要:
A method for treating fuel containing vanadium including extracting vanadium from the fuel with an adsorption material and fractionating the fuel into a light oil fraction and a heavy fuel fraction. The light fuel fraction has a reduced amount of vanadium. Systems for fuel preparation are also provided.
摘要:
A system includes an exhaust conduit configured to conduct a stream of exhaust gas, wherein the exhaust conduit comprises a selective catalytic reduction catalyst reactor comprising a first catalyst composition; an fuel source configured to introduce a fuel into the exhaust gas stream within the exhaust conduit upstream of the selective catalytic reduction catalyst reactor; a catalytic partial oxidation reformer in fluid communication with the exhaust gas stream and upstream from the selective catalytic reduction catalyst reactor, wherein the catalytic partial oxidation reformer can introduce a hydrogen-rich syngas co-reductant into the exhaust gas stream, when a temperature of the exhaust fluid is less than a determined threshold temperature.
摘要:
A method for facilitating reducing mercury in a fluid stream using a catalytic bed assembly including at least a first catalytic bed. The method includes receiving a flow of fluid including mercury at the catalytic bed assembly; injecting a flow of a compound including ammonia and a first mercury oxidizer upstream of the first catalytic bed; and oxidizing the mercury using the mercury oxidizer and the catalytic bed assembly.
摘要:
A system comprises a mixed reforming zone configured to receive a first fuel steam mixture and an oxidant to produce a first reformate stream comprising hydrogen. The system further comprises at least one steam-reforming zone configured to receive the first reformate stream, a first portion of steam and a second fuel to produce a second reformate stream comprising hydrogen. The first reformate stream is mixed with the first portion of steam and second fuel before entering the steam reforming zone.
摘要:
A method of producing a fuel composition from a bio-oil feedstock is provided, wherein the bio-oil feedstock is subjected to a step of oil extraction to produce a bio-oil and deoiled residue. At least a portion of the deoiled residue is gasified to produce a hydrogen-containing gas. The bio-oil is subjected to an upgrading process to ultimately produce a fuel composition. At least a part of the hydrogen-containing gas produced in the gasification of deoiled residue is used in the upgrading process of producing a fuel composition. The upgrading process, which can involve hydro-treating, hydroisomerization and at least one separation step, produces light hydrocarbons in addition to the product fuel composition. The light hydrocarbons can be used in the gasification operation, e.g., to reduce tar formation.
摘要:
A method of producing a fuel composition from a bio-oil feedstock is provided, wherein the bio-oil feedstock is subjected to a step of oil extraction to produce a bio-oil and deoiled residue. At least a portion of the deoiled residue is gasified to produce a hydrogen-containing gas. The bio-oil is subjected to an upgrading process to ultimately produce a fuel composition. At least a part of the hydrogen-containing gas produced in the gasification of deoiled residue is used in the upgrading process of producing a fuel composition. The upgrading process, which can involve hydro-treating, hydroisomerization and at least one separation step, produces light hydrocarbons in addition to the product fuel composition. The light hydrocarbons can be used in the gasification operation, e.g., to reduce tar formation.