摘要:
A method of operating a fuel cell system having a fuel cell stack and a plurality of fuel cells associated with the fuel cell stack. The method includes monitoring an operating parameter associated with the fuel cell stack, and adjusting a temperature of the fuel cell stack based on the operating parameter.
摘要:
A fuel cell assembly includes a fuel cell stack, a first end plate associated with the fuel cell stack and a first heatable element adapted to heat the first end plate.
摘要:
The invention relates to fuel cell systems and associated methods of operation where an electrochemical cell such as a fuel cell is used as an electrochemical hydrogen separator to separate hydrogen from a process stream (e.g., reformate or synthesis gas), or as an electrochemical hydrogen expander to inject hydrogen into a process stream. In one aspect, the invention provides a method of operating a fuel cell system, including the following steps: flowing hydrogen from a hydrogen supply conduit through a fuel cell to provide an electric current to a load coupled to the fuel cell; actuating an electrochemical hydrogen separator in a first mode of operation of the system to transfer hydrogen from the hydrogen supply conduit to a hydrogen storage vessel; and actuating an electrochemical hydrogen expander in a second mode of operation of the system to transfer hydrogen from the hydrogen storage vessel to the fuel cell.
摘要:
A process for forming at least one interface region between two regions of semiconductor material. At least one region of dielectric material comprising nitrogen is formed in the vicinity of at least a portion of a boundary between the two regions of semiconductor material, thereby controlling electrical resistance at the interface.
摘要:
A method, and associated structure, for monitoring temperature and temperature distributions in a heating chamber for a temperature range of 200 to 600° C., wherein the heating chamber may be used in the fabrication of a semiconductor device. A copper layer is deposited over a surface of a semiconductor wafer. Next, the wafer is heated in an ambient oxygen atmosphere to a temperature in the range of 200-600° C. The heating of the wafer oxidizes a portion of the copper layer, which generates an oxide layer. After being heated, the wafer is removed and a sheet resistance is measured at points on the wafer surface. Since the local sheet resistance is a function of the local thickness of the oxide layer, a spatial distribution of sheet resistance over the wafer surface reflects a distribution of wafer temperature across the wafer surface during the heating of the wafer. The measured spatial distribution of sheet resistance may be utilized to readjust the spatial distribution of heat input to another wafer in order to achieve a more uniform temperature across the other wafer's surface. In addition, the monitor may be reconditioned for repeated use by heating the monitor in a hydrogen ambient environment to convert the oxide layer to unoxidized copper. Additionally, the oxide layer has a color that is a function of the oxide layer thickness, where the color may be used to estimate the temperature at which the wafer was heated in the ambient oxygen atmosphere.
摘要:
A process for forming at least one interface region between two regions of semiconductor material. At least one region of dielectric material comprising nitrogen is formed in the vicinity of at least a portion of a boundary between the two regions of semiconductor material, thereby controlling electrical resistance at the interface.
摘要:
A method, and associated structure, for monitoring temperature and temperature distributions in a heating chamber for a temperature range of 200 to 600° C., wherein the heating chamber may be used in the fabrication of a semiconductor device. A copper layer is deposited over a surface of a semiconductor wafer. Next, the wafer is heated in an ambient oxygen atmosphere to a temperature in the range of 200-600° C. The heating of the wafer oxidizes a portion of the copper layer, which generates an oxide layer. After being heated, the wafer is removed and a sheet resistance is measured at points on the wafer surface. Since the local sheet resistance is a function of the local thickness of the oxide layer, a spatial distribution of sheet resistance over the wafer surface reflects a distribution of wafer temperature across the wafer surface during the heating of the wafer. The measured spatial distribution of sheet resistance may be utilized to readjust the spatial distribution of heat input to another wafer in order to achieve a more uniform temperature across the other wafer's surface. In addition, the monitor may be reconditioned for repeated use by heating the monitor in a hydrogen ambient environment to convert the oxide layer to unoxidized copper. Additionally, the oxide layer has a color that is a function of the oxide layer thickness, where the color may be used to estimate the temperature at which the wafer was heated in the ambient oxygen atmosphere.
摘要:
A system includes a generator and a circuit. The generator is coupled to provide power to a power grid. The circuit is coupled to the generator and is adapted to use a scheme to detect a shut down of the power grid and prevent the generator from providing power to the power grid in response to the detection of the shut down of the power grid. The circuit is also adapted to receive an indication to modify the scheme and modify the scheme based on the indication.
摘要:
An integrated semiconducting device comprises a semiconducting substrate, a plurality of grounding strips disposed above the substrate in a lower metal level of the semiconducting device, an inductor positioned in an upper metal level of the semiconducting device, and a plurality of conducting vias connected to and extending away from the grounding strips towards the inductor. The inductor, conducting via, ground strips structure forms a Faraday cage that acts as a shield against electromagnetic radiation. The number and placement of the conductive vias are adjustable and can be optimized based on the relative importance of maximizing the quality factor Q of the inductor or minimizing the capacitance between the inductor and ground.
摘要:
A shorter gate length FET for very large scale integrated circuit chips is achieved by providing a wafer with multiple threshold voltages. Multiple threshold voltages are developed by combining multiple work function gate materials. The gate materials are geometrically aligned in a predetermined pattern so that each gate material is adjacent to other gate materials. A patterned linear array embodiment is developed for a multiple threshold voltage design. The method of forming a multiple threshold voltage FET requires disposing different gate materials in aligned trenches within a semiconductor wafer, wherein each gate material represents a separate work function. The gate materials are arranged to be in close proximity to one another to accommodate small gate length designs.