摘要:
An apparatus for inspecting an electric component in an inverter circuit has a DC power supply for supplying a direct current to a given position in an inverter circuit, a voltage detector for detecting a voltage at a given position in the inverter circuit, a current detector for detecting a current flowing at a given position in the inverter circuit, a switching circuit for changing positions at which the direct current is supplied from the DC power supply, positions at which the voltage is detected by the voltage detector, and positions at which the current is detected by the current detector, and a controller for outputting a switching signal to the switching circuit. The switching circuit is controlled by the controller to charge an electrolytic capacitor in an inverter circuit with a current from the DC power supply. The electrolytic capacitor is determined as to its quality by determining whether the calculated electrolytic capacitance of the electrolytic capacitor falls within a preset range or not. Each of the transistors of the inverter circuit is determined as to its quality by determining whether an V.sub.CE -I.sub.C curve thereof falls in a preset range or not. The electrolytic capacitor, the transistors, and also diodes connected across the transistors can be determined as to whether they are acceptable or not while they are being connected in the inverter circuit.
摘要:
A method and apparatus for inspecting a transistor in an inverter circuit includes turning on only the transistor of the inverter circuit. A predetermined collector current is supplied to the transistor until a transistor junction temperature reaches a predetermined temperature. The transistor is acceptable if a difference between a transistor collector-to-emitter voltage when the predetermined collector current is supplied and a transistor collector-to-emitter voltage when the junction temperature reaches the predetermined temperature falls within a preset range. Switching elements of the inverter circuit are controlled to supply a current through a resistor to charge an electrolytic capacitor of the inverter circuit. A voltage across the electrolytic capacitor during charging and a time period is measured from the beginning of charging until a time when a voltage across the electrolytic capacitor attains a predetermined voltage. An electrostatic capacitance of the electrolytic capacitor is determined based on the measured time period and a resistance value of the resistor. The electrolytic capacitor is discharged and a discharging voltage and current are measured. An equivalent series resistance of the electrolytic capacitor is determined based upon the voltage of the electrolytic capacitor at the beginning of discharge, the electrolytic capacitance and the measured discharge voltage and current.
摘要:
An apparatus for inspecting an electric component in an inverter circuit has a DC power supply for supplying a direct current to a given position in an inverter circuit, a voltage detector for detecting a voltage at a given position in the inverter circuit, a current detector for detecting a current flowing at a given position in the inverter circuit, a switching circuit for changing positions at which the direct current is supplied from the DC power supply, positions at which the voltage is detected by the voltage detector, and positions at which the current is detected by the current detector, and a controller for outputting a switching signal to the switching circuit. The switching circuit is controlled by the controller to charge an electrolytic capacitor in an inverter circuit with a current from the DC power supply. The electrolytic capacitor is determined as to its quality by determining whether the calculated electrolytic capacitance of the electrolytic capacitor falls within a preset range or not. Each of the transistors of the inverter circuit is determined as to its quality by determining whether an V.sub.CE -I.sub.C curve thereof falls in a preset range or not. The electrolytic capacitor, the transistors, and also diodes connected across the transistors can be determined as to whether they are acceptable or not while they are being connected in the inverter circuit.
摘要:
A semiconductor device includes an intermediate layer provided between a semiconductor element and a heat sink. The intermediate layer moderates thermal stress resulting from a difference between thermal expansion of the semiconductor element and thermal expansion of the heat sink arising due to heat produced by the semiconductor element. This thermal stress moderation reduces warping of the semiconductor device as a whole.
摘要:
A semiconductor device includes an intermediate layer provided between a semiconductor element and a heat sink. The intermediate layer moderates thermal stress resulting from a difference between thermal expansion of the semiconductor element and thermal expansion of the heat sink arising due to heat produced by the semiconductor element. This thermal stress moderation reduces warping of the semiconductor device as a whole.
摘要:
A semiconductor device includes first and second assembled bodies (12A, 12B). The first assembled body is provided with a first semiconductor chip, a high voltage bus bar (21) connected to one surface of the first semiconductor chip, a first metal wiring board (24-1) connected to the other surface of the first semiconductor chip with a bonding wire, and a third metal wiring board (24-3) connected to the first metal wiring board. The second assembled body is provided with a second semiconductor chip, a low voltage bus bar (23) connected to one surface of the second semiconductor chip with a bonding wire, a second metal wiring board (24-2) connected to the other surface of the second semiconductor chip, and a fourth metal wiring board (24-4) connected by being returned from an end portion of the second metal wiring board and arranged in parallel to the second metal wiring board. The first assembled body and the second assembled body are arranged in a stacked structure wherein the assembled bodies are being separated. Inductance of a main circuit is reduced by the semiconductor module structure.
摘要:
A semiconductor device is composed of a pair of semiconductor chips (402, 404) arranged parallel on the same flat plane; a high voltage bus bar (21) bonded on the surface on the collector side of one semiconductor chip (402); a low voltage bus bar (23) connected to the surface on the emitter side of the other semiconductor chip (404) with a bonding wire (27); a first metal wiring board (24-1) connected to the surface on the emitter side of the semiconductor chip (402) with a bonding wire (26); a second metal wiring board (24-2) bonded on the surface on the collector side of the semiconductor chip (404); a third metal wiring board (24-3) connected to the first metal wiring board (24-1); a fourth metal wiring board (24-4) connected by being bent from an end portion of the second metal wiring board (24-2); and an output bus bar (24) having output terminals (405) extending from each end portion of the third metal wiring board (24-3) and that of the fourth metal wiring board (24-4).
摘要:
A direct current resistance welding machine and a method of controlling the direct current resistance welding machine wherein primary current of a welding transformer is detected when a plurality of switching devices of an inverter are controlled based on corresponding pulses having a predetermined frequency and each having a time width corresponding to the value of a required secondary current. Rise and fall times of the detected primary current are detected. An upper limit frequency Of the primary current is computed based on the time width of each pulse and on the rise and fall times. Thus, the primary current of the welding transformer is controlled by controlling the switching devices based on pulses having a frequency falling within the computed upper limit frequency.
摘要:
A direct-current resistance welding apparatus includes pneumatic actuators for pressurizing welding guns, respectively, to grip respective workpieces, an inverter composed of a plurality of parallel-connected switching device units each comprising a pair of series-connected switching devices, and a plurality of welding transformers connected to the welding guns, respectively, and also connected between the switching device units. A timer circuit applies an energization signal to energize the switching device units. The pneumatic actuators are actuated by a control circuit to pressurize the welding guns and successively energize the switching device units according to s sequence read from a sequence memory circuit.
摘要:
A semiconductor device is composed of a pair of semiconductor chips (402, 404) arranged parallel on the same flat plane; a high voltage bus bar (21) bonded on the surface on the collector side of one semiconductor chip (402); a low voltage bus bar (23) connected to the surface on the emitter side of the other semiconductor chip (404) with a bonding wire (27); a first metal wiring board (24-1) connected to the surface on the emitter side of the semiconductor chip (402) with a bonding wire (26); a second metal wiring board (24-2) bonded on the surface on the collector side of the semiconductor chip (404); a third metal wiring board (24-3) connected to the first metal wiring board (24-1); a fourth metal wiring board (24-4) connected by being bent from an end portion of the second metal wiring board (24-2); and an output bus bar (24) having output terminals (405) extending from each end portion of the third metal wiring board (24-3) and that of the fourth metal wiring board (24-4).