摘要:
Methods for fabricating a hybrid interconnect structure that possesses a higher interconnect capacitance in one set of regions than in other regions on the same microelectronic chip. Several methods to fabricate such a structure are provided. Circuit implementations of such hybrid interconnect structures are described that enable increased static noise margin and reduce the leakage in SRAM cells and common power supply voltages for SRAM and logic in such a chip. Methods that enable combining these circuit benefits with higher interconnect performance speed and superior mechanical robustness in such chips are also taught.
摘要:
Methods for fabricating a hybrid interconnect structure that possesses a higher interconnect capacitance in one set of regions than in other regions on the same microelectronic chip. Several methods to fabricate such a structure are provided. Circuit implementations of such hybrid interconnect structures are described that enable increased static noise margin and reduce the leakage in SRAM cells and common power supply voltages for SRAM and logic in such a chip. Methods that enable combining these circuit benefits with higher interconnect performance speed and superior mechanical robustness in such chips are also taught.
摘要:
Method of manufacturing a structure which includes the steps of providing a structure having an insulator layer with at least one interconnect, forming a sub lithographic template mask over the insulator layer, and selectively etching the insulator layer through the sub lithographic template mask to form sub lithographic features spanning to a sidewall of the at least one interconnect.
摘要:
Often used to reduce the RC delay in integrated circuits are dielectric films of porous organosilicates which have a silica like backbone with alkyl or aryl groups (to add hydrophobicity to the materials and create free volume) attached directly to the Si atoms in the network. Si—R bonds rarely survive an exposure to plasmas or chemical treatments commonly used in processing; this is especially the case in materials with an open cell pore structure. When Si—R bonds are broken, the materials lose hydrophobicity, due to formation of hydrophilic silanols and low dielectric constant is compromised. A method by which the hydrophobicity of the materials is recovered using a novel class of silylation agents which may have the general formula (R2N)XSiR′Y where X and Y are integers from 1 to 3 and 3 to 1 respectively, and where R and R′ are selected from the group of hydrogen, alkyl, aryl, allyl and a vinyl moiety. Mechanical strength of porous organosilicates is also improved as a result of the silylation treatment.
摘要:
A method for fabricating an interconnect structure for interconnecting a semiconductor substrate to have three distinct patterned structures such that the interconnect structure provides both a low k and high structural integrity. The method includes depositing an interlayer dielectric onto the semiconductor substrate, forming a first pattern within the interlayer dielectric material by a first lithographic process that results in both via features and ternary features being formed in the interconnect structure. The method further includes forming a second pattern within the interlayer dielectric material by a second lithographic process to form line features within the interconnect structure. Hence the method forms the three separate distinct patterned structures using only two lithographic processes for each interconnect level.
摘要:
A method is described for the repair of process induced damage sustained by low-k organosilicate dielectrics as a result of reactive ion etch, resist strip, wet clean and CMP operations in a hard mask free integration of these dielectrics into microelectronic interconnect structures incorporating a dielectric cap which is an etch stop and barrier layer. In situ reaction of the damaged regions with a suitable silylation agent just prior to a passivation barrier cap deposition is proposed as the most efficacious means to repair all the damage sustained by the dielectric. Variations of this method which include ex situ rather than in situ silylation are also described for use with hard mask free integration with selective barrier caps.
摘要:
Novel semiconductor devices containing a discontinuous cap layer and possessing a relatively low dielectric constant are provide herein. The novel semiconductor devices includes at least a substrate, a first dielectric layer applied on at least a portion of the substrate, a first set of openings formed through the dielectric layer to expose the surface of the substrate so that a conductive material deposited within and filling the openings provides a first set of electrical contact conductive elements and a discontinuous layer of cap material covering at least the top of the conductive elements to provide a first set of discontinuous cap elements. Methods for forming the semiconductor devices are also provided.
摘要:
A porous, low-k dielectric film that has good mechanical properties as well as a method of fabricating the film and the use of the film as a dielectric layer between metal wiring features are provided. The porous, low-k dielectric film includes a first phase of monodispersed pores having a diameter of from about 1 to about 10 nm that are substantially uniformly spaced apart and are essentially located on sites of a three-dimensional periodic lattice; and a second phase which is solid surrounding the first phase. Specifically, the second phase of the film includes (i) an ordered element that is composed of nanoparticles having a diameter of from about 1 to about 10 nm that are substantially uniformly spaced apart and are essentially arranged on sites of a three-dimensional periodic lattice, and (ii) a disordered element comprised of a dielectric material having a dielectric constant of about 2.8 or less.
摘要:
A low-k dielectric metal conductor interconnect structure having no micro-trenches present therein and a method of forming such a structure are provided. Specifically, the above structure is achieved by providing an interconnect structure which includes at least a multilayer of dielectric materials which are applied sequentially in a single spin apply tool and then cured in a single step and a plurality of patterned metal conductors within the multilayer of spun-on dielectrics. The control over the conductor resistance is obtained using a buried etch stop layer having a second atomic composition located between the line and via dielectric layers of porous low-k dielectrics having a first atomic composition. The inventive interconnect structure also includes a hard mask which assists in forming the interconnect structure of the dual damascene-type. The first and second composition are selected to obtain etch selectivity of at least 10 to 1 or higher, and are selected from specific groups of porous low-k organic or inorganic materials with specific atomic compositions and other discoverable quantities.
摘要:
Method of manufacturing a structure which includes the steps of providing a structure having an insulator layer with at least one interconnect, forming a sub lithographic template mask over the insulator layer, and selectively etching the insulator layer through the sub lithographic template mask to form sub lithographic features spanning to a sidewall of the plurality of interconnects.