Abstract:
The invention relates to a process for preparing aluminates of the general formula (I) A1BxAl12-xO19-y where A is at least one element from the group consisting of Sr, Ba and La, B is at least one element from the group consisting of Mn, Fe, Co, Ni, Rh, Cu and Zn, x=0.05-1.0, y is a value determined by the oxidation states of the other elements, which comprises the steps (i) provision of one or more solutions or suspensions comprising precursor compounds of the elements A and B and also a precursor compound of aluminum in a solvent, (ii) conversion of the solutions or suspensions or the solutions into an aerosol, (iii) introduction of the aerosol into a directly or indirectly heated pyrolysis zone, (iv) carrying out of the pyrolysis and (v) separation of the resulting particles comprising hexaaluminate of the general formula (I) from the pyrolysis gas.
Abstract:
The present invention relates to a process for producing a catalyst for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen. The production of the catalyst is based on contacting of a hydrotalcite-comprising starting material with a fusible metal salt. The compounds which have been brought into contact with one another are intimately mixed and treated thermally, resulting in the fusible metal salt forming a melt. After molding, the material is subjected to a high-temperature calcination step. The metal salt melt comprises at least one metal selected from the group consisting of K, La, Fe, Co, Ni, Cu and Ce, preferably Ni. The metal salt melt more preferably comprises nickel nitrate hexahydrate. In addition, the invention relates to the use of the catalyst of the invention for the reforming of hydrocarbons, preferably methane, in the presence of CO2, water and/or hydrogen at elevated pressures which are greater than 5 bar, preferably greater than 10 bar, particularly preferably greater than 20 bar. The catalyst according to the invention is distinguished from the prior art by particular, preferred physicochemical properties.
Abstract:
The invention relates to a catalytic high-pressure process for the CO2 reforming of hydrocarbons, preferably methane, in the presence of iridium-comprising active compositions and also a preferred active composition in which Ir is present in finely dispersed form on zirconium dioxide-comprising support material. The predominant proportion of the zirconium dioxide preferably has a cubic and/or tetragonal structure and the zirconium dioxide is more preferably stabilized by means of at least one doping element. In the process of the invention, reforming gas is brought into contact at a pressure of greater than 5 bar, preferably greater than 10 bar and more preferably greater than 20 bar, and a temperature which is in the range from 600 to 1200° C., preferably in the range from 850 to 1100° C. and in particular in the range from 850 to 950° C., and converted into synthesis gas. The process of the invention is carried out using a reforming gas which comprises only small amounts of water vapor or is completely free of water vapor. In the process, the formation of carbonaceous material on the catalyst is greatly suppressed while carrying out the process, as a result of which the process can be carried out over a long period of time without significant decreases in activity occurring.
Abstract:
A method of reforming mixtures of hydrocarbons, preferably methane, and carbon dioxide, wherein the method comprises at least two stages. In a first stage, a reactant gas is contacted with a precious metal catalyst and converted to a first product gas (also referred to hereinafter as product gas 1). In a second stage, the first product gas obtained in the first stage is contacted with a non-precious metal catalyst and converted to a second product gas (also referred to hereinafter as product gas 2). The process can also include adding gases to the product gas 1 obtained in the first stage. The practice of the process can minimize the formation of coke on the catalyst in an efficient manner. The combination of a first stage with a precious metal catalyst and at least one second stage with non-precious metal catalyst allows considerable amounts of costly precious metals to be saved.
Abstract:
The invention relates to a nickel hexaaluminate-comprising catalyst for reforming hydrocarbons, preferably methane, in the presence of carbon dioxide, which comprises hexaaluminate in a proportion in the range from 65 to 95% by weight, preferably from 70 to 90% by weight, and a crystalline, oxidic secondary phase selected from the group consisting of LaAlO3, SrAl2O4 and BaAl2O4 in the range from 5 to 35% by weight, preferably from 10 to 30% by weight. The BET surface area of the catalyst is ≧5 m2/g, preferably ≧10 m2/g. The molar nickel content of the catalyst is ≦3 mol %, preferably ≦2.5 mol % and more preferably ≦2 mol %. The interlayer cations are preferably Ba and/or Sr. The process for producing the catalyst comprises the steps: (i) production of a mixture of metal salts, preferably nitrate salts of Ni and also Sr and/or La, and a nanoparticulate aluminum source, (ii) molding and (iii) calcination. The catalyst of the invention is brought into contact with hydrocarbons, preferably methane, and CO2 in a reforming process, preferably at a temperature of >800° C. The catalyst is also distinguished by structural and preferred properties of the nickel, namely that the nickel particles mostly have a tetragonal form and the particles have a size of ≦50 nm, preferably ≦40 nm and particularly preferably ≦30 nm, and are present finely dispersed as grown-on hexaaluminate particles. The catalyst has only a very low tendency for carbonaceous deposits to be formed.
Abstract:
The invention relates to a process for producing a catalyst for the high-temperature processes (i) carbon dioxide hydrogenation, (ii) combined high-temperature carbon dioxide hydrogenation and reforming and/or (iii) reforming of hydrocarbon-comprising compounds and/or carbon dioxide and the use of the catalyst of the invention in the reforming and/or hydrogenation of hydrocarbons, preferably methane, and/or of carbon dioxide. To produce the catalyst, an aluminum source, which preferably comprises a water-soluble precursor source, is brought into contact with an yttrium-comprising metal salt solution, dried and calcined. The metal salt solution comprises, in addition to the yttrium species, at least one element from the group consisting of cobalt, copper, nickel, iron and zinc.
Abstract:
A hexaaluminate-containing catalyst containing a hexaaluminate-containing phase which includes cobalt and at least one further element of La, Ba or Sr. The catalyst contains 2 to 15 mol % Co, 70 to 90 mol % Al, and 2 to 25 mol % of the further element of La, Ba or Sr. In addition to the hexaaluminate-containing phase, the catalyst can include 0 to 50% by weight of an oxidic secondary phase. The process of preparing the catalyst includes contacting an aluminum oxide source with cobalt species and at least with an element from the group of La, Ba and Sr. The molded and dried material is preferably calcined at a temperature greater than or equal to 800° C. In the reforming process for reacting hydrocarbons in the presence of CO2, the catalyst is used at a process temperature of greater than 700° C., with the process pressure being greater than 5 bar.