Abstract:
The present disclosure relates to an exhaust gas control catalyst including a base and a catalyst coating layer having a two-layer structure on the base. The catalyst coating layer includes a lower layer on the base, and an upper layer on the lower layer. The upper layer of the catalyst coating layer contains Rh particles in which a mean particle diameter measured by observation using a transmission electron microscope is 1.0 nm or more and 2.0 nm or less and a particle-diameter standard deviation σ is 0.8 nm or less. A length of the upper layer from an end face on a downstream side in an exhaust gas flow direction falls within a range of 70% or more and 100% or less of a total length of the base.
Abstract:
A supported catalyst particles include oxide carrier particles and noble metal particles supported on the oxide carrier particles, wherein the mass of the noble metal particles is less than or equal to 5 mass % based on the mass of the oxide carrier particles, and the average particle size of the noble metal particles measured by transmission electron microscopy is 1.0-2.0 nm, with the standard deviation σ less than or equal to 0.8 nm.
Abstract:
A supported catalyst particles include oxide carrier particles and noble metal particles supported on the oxide carrier particles, wherein the mass of the noble metal particles is less than or equal to 5 mass % based on the mass of the oxide carrier particles, and the average particle size of the noble metal particles measured by transmission electron microscopy is 1.0-2.0 nm, with the standard deviation σ less than or equal to 0.8 nm.
Abstract:
An object of the present invention is to provide an exhaust gas purification catalyst for purifying exhaust gas, in particular, fine composite-metal particles contained therein, and a method for producing the same.The exhaust gas purification catalyst according to the present invention includes fine composite-metal particles containing Rh and Pd, wherein, when the fine composite-metal particles in the exhaust gas purification catalyst are analyzed by STEM-EDX, the average ratio of the amount of Pd with respect to the total amount of Rh and Pd in the fine composite-metal particles is 1.7 atomic % or more and 24.8 atomic % or less.
Abstract:
A reuse evaluation system is a system that performs an evaluation to reuse a catalyst in a state where the catalyst that purifies an exhaust gas of an engine of a vehicle 1 is mounted on the vehicle. The reuse evaluation system includes a deterioration estimator that estimates a degree of deterioration of the catalyst based on an operating state of the vehicle, a reuse setting unit that sets a range of the degree of deterioration of the catalyst as a reuse range of the catalyst according to a usage of reuse of the catalyst, and a reuse determining unit that determines that the catalyst is reusable in the reuse usages when the degree of deterioration of the catalyst estimated by the deterioration estimator is within the reuse range set by the reuse setting unit.
Abstract:
An NOx storage reduction catalyst includes a catalyst support, and a catalyst metal and an NOx storage material supported thereon, wherein the catalyst metal is composed of a platinum-gold solid solution, and has a gold content of greater than 1 mol % but 20 mol % or less relative to the total molar number of platinum and gold contained in the catalyst metal. A method for producing an NOx storage reduction catalyst includes adding sodium borohydride to a mixed solution containing platinum ions and gold ions, thereby reducing the platinum ions and the gold ions to produce a catalyst metal composed of a platinum-gold solid solution; purifying the catalyst metal; and supporting the catalyst metal and an NOx storage material on a catalyst support.
Abstract:
The present disclosure provides an exhaust gas purification material and an exhaust gas purification device that can efficiently remove harmful components even after being exposed to high temperature. Such exhaust gas purification material comprises metal oxide particles and noble metal particles supported on the metal oxide particles. The noble metal particles have a particle size distribution with a mean of 1.5 nm and 18 nm and a standard deviation of less than 1.6 nm.
Abstract:
A method for reusing a vehicular catalyst that ensures effective reuse of a catalyst discarded when a vehicle is discarded is provided. A catalyst deterioration level of a catalytic converter is diagnosed, a catalyst that has a value of the deterioration level diagnosed to be smaller than a predetermined value is determined as a reusable catalyst, and the catalytic converter that includes the catalyst determined as the reusable catalyst is removed from a discarded vehicle. The removed catalytic converter is stored in association with a vehicle type and a manufacturing time of the discarded vehicle. When an abnormality occurs in a catalyst of a drivable vehicle corresponding to the vehicle type and the manufacturing time, a catalytic converter that includes the abnormal catalyst is replaced with the stored catalytic converter.
Abstract:
The present disclosure provides a method for producing an exhaust gas purifying catalyst, in which fine Rh—Pd particles exhibiting high catalytic activity are produced such that a variation in the Pd composition can be reduced. The present disclosure relates to a method for producing an exhaust gas purifying catalyst having fine composite metal particles containing Rh and Pd, comprising: preparing a starting material solution containing Rh and Pd, in which the atomic percentage of Pd to the total of Rh and Pd is 1 atomic % to 15 atomic %; and allowing the prepared starting material solution to react with a neutralizer by a super agitation reactor having a rotation number of 500 rpm or more, to generate fine composite metal particles.
Abstract:
The present disclosure provides an exhaust gas purifying catalyst having improved durability of rhodium, which comprises a carrier and rhodium (Rh), wherein the carrier comprises aluminum oxide (Al2O3), and 15% to 60% of the rhodium is dissolved in the carrier.