Abstract:
Apparatus and methods are disclosed for forming a glass article in which molten glass is heated in a refractory vessel by establishing an electrical current in the molten glass between opposing powered electrodes along a first electrical path. The melting vessel includes a precious metal component in contact with the molten glass, and at least one non-powered electrode proximate the precious metal component. The at least one non-powered electrode and the precious metal component form second and third electrical paths, respectively, in parallel with the first electrical path such that an electrical current in the second electrical path is decreased, thereby reducing an electrochemical reaction in the precious metal component.
Abstract:
A first method of forming an object (400) includes wrapping foil around a preform (305) to provide a multi-layered structure including a plurality of layers of wrapped foil, and diffusion bonding the plurality of layers and the preform (305) together to form the object (400). A second method of forming an object includes wrapping foil around a preform (305) to provide a multi-layered structure comprising a plurality of layers of wrapped foil, removing the preform (305) from the multi-layered structure, and diffusion bonding the plurality of layers together to form the object (400). A third method of forming an object includes stacking a plurality of layers of foil to provide a multi- layered structure, diffusion bonding the plurality of layers together, and shaping the diffusion bonded multi-layered structure to form the object (400).
Abstract:
Low-carbon monolithic refractories are provided. Methods of manufacturing glass employing low-carbon monolithic refractories are also provided. Methods and apparatuses for glass manufacture for reducing the formation of carbon dioxide blisters during glass manufacture are also provided.
Abstract:
A method is disclosed for mechanically bonding a metal component to a ceramic material, comprising providing a metal component comprising an anchor material attached to at least a first portion of one surface of the metal component; providing a ceramic material having a first surface and a second surface, wherein the ceramic material defines at least one conduit extending from the first surface to the second surface, wherein the at least one conduit has a first open end defined by the first surface, a second open end defined by the second surface, a continuous sidewall and a cross sectional area; positioning the ceramic material such that at least a portion of the at least one conduit is in overlying registration with at least a portion of the anchor material; and applying a bonding agent into at least a portion of the at least one conduit.
Abstract:
A precious metal structure which has an internal gas permeable membrane is described herein for a glass manufacturing vessel configured to have molten glass flow therein. The internal gas permeable membrane can be supplied with an atmosphere of gas (or gases) to control the flux of hydrogen into our out of the molten glass or otherwise improve the production of the molten glass. In this manner, the undesirable detrimental reactions that can occur at the interface of the molten glass and precious metal interface which can cause defects in the molten glass such as bubbles or solid inclusions can be stopped or at least substantially reduced.
Abstract:
Methods and apparatus for producing display quality glass sheets are provided in which the batch materials for making the sheets are melted in a furnace whose glass-engaging surfaces comprise zirconia (ZrO2). By using molybdenum electrodes, instead of the conventional tin electrodes, to electrically heat the molten glass, the wear rate per unit area of the furnace's glass-engaging, zirconia-containing surfaces are reduced by more than 50%, thus reducing zirconia levels (solid+dissolved) in the finished glass by at least a similar amount. As a consequence of this reduction, rejection rates of finished glass sheets are lowered, which is of particular value in the production of glass sheets of large dimensions, as desired by display manufacturers and other users of such sheets.
Abstract:
The present disclosure relates to high purity nickel molds for use in forming three dimensional glass substrates, along with methods of making three dimensional glass substrates. The mold compositions minimize imperfections in the formed glass substrates providing optical quality shaped glass articles for use in electronics applications.
Abstract:
Low-carbon monolithic refractories are provided. Methods of manufacturing glass employing low-carbon monolithic refractories are also provided. Methods and apparatuses for glass manufacture for reducing the formation of carbon dioxide blisters during glass manufacture are also provided.
Abstract:
A glass ceramic precursor glass and a glass ceramic having low levels of rhodium and a method of controlling the amount of rhodium in such glasses and glass ceramics. The precursor glass and glass ceramic contain from about 1 ppm to about 10 ppm and, in certain embodiments, from about 1 ppm to about 6 ppm rhodium. The method of controlling of reducing rhodium dissolution from a rhodium-containing material such as, for example, an alloy into a glass melt comprises controlling and/or lowering the partial pressure of oxygen at the rhodium-containing vessel/glass interface by imposing a high humidity condition around the external (non-glass-contact) surface of the rhodium-containing material. The lower concentration of rhodium minimizes its coloring effect on the white color of the glass ceramic.
Abstract:
A mold for shaping glass can be made by a method that includes providing a mold body having a shaping surface comprising at least about 90% nickel and modifying the composition of the shaping surface of the mold body by exposing the shaping surface to an oxidizing heat treatment. The oxidizing heat treatment may include a ramping heat treatment, a fixed heat treatment, or both the ramping heat treatment and the fixed heat treatment. The ramping heat treatment may include increasing a heating temperature at a rate from about 20° C./hour to about 500° C./hour to a temperature from about 700° C. to about 1000° C. The fixed heat treatment may include holding the heating temperature from about 700° C. to about 1000° C. for a holding time of at least about 5 minutes.