摘要:
An integrated circuit device is presented. The integrated circuit device of the present invention comprises a semiconductor substrate having a combination of transistor gates formed using a conventional dielectric-capped gate stack for self-aligned diffusion contacts (SAC) as well as a transistor gate structure formed by removing the dielectric-cap gate stack from selected regions of the semiconductor substrate and replacing the dielectric-cap gate stack with a second gate conductor which is patterned using a damascene process.
摘要:
An integrated circuit device is presented. The integrated circuit device of the present invention comprises a semiconductor substrate having a combination of transistor gates formed using a conventional dielectric-capped gate stack for self-aligned diffusion contacts (SAC) as well as a transistor gate structure formed by removing the dielectric-cap gate stack from selected regions of the semiconductor substrate and replacing the dielectric-cap gate stack with a second gate conductor which is patterned using a damascene process.
摘要:
A method for counter-doping gate stack conductors on a semiconductor substrate, which substrate is provided with narrow space array regions (i.e., memory device regions) having a plurality of capped gate stack conductors spaced a first distance apart, and wide space array regions (i.e., logic device regions) having a plurality of gate stack conductors spaced a second distance apart, wherein the first distance is narrow in relation to the second distance. The method comprises depositing a conformal dopant source so as to provide gap fill between gate stack conductors in the narrow space array regions and under fill between gate stack conductors in the wide space array regions; etching so that the conformal dopant source is removed from the wide space array regions and remains at least in part between the gate stack conductors in the narrow space array regions; and counter-doping gate stack conductors in the narrow space array regions by lateral diffusion of dopant from conformal dopant source through narrow space array gate stack conductor sidewalls.
摘要:
A method of fabricating a vertical field effect transistor (“FET”) is provided which includes a transistor body region and source and drain regions disposed in a single-crystal semiconductor-on-insulator (“SOI”) region of a substrate adjacent a sidewall of a trench. The substrate includes a buried insulator layer underlying the SOI region and a bulk region underlying the buried insulator layer. A buried strap conductively connects the SOI region to a lower node disposed below the SOI region and a body contact extends from the transistor body region to the bulk region of the substrate, the body contact being insulated from the buried strap.
摘要:
A vertical field effect transistor (“FET”) is provided which includes a transistor body region and source and drain regions disposed in a single-crystal semiconductor-on-insulator (“SOI”) region of a substrate adjacent a sidewall of a trench. The substrate includes a buried insulator layer underlying the SOI region and a bulk region underlying the buried insulator layer. A buried strap conductively connects the SOI region to a lower node disposed below the SOI region and a body contact extends from the transistor body region to the bulk region of the substrate, the body contact being insulated from the buried strap.
摘要:
The present invention provides a vertical memory device formed in a silicon-on-insulator substrate, where a bitline contacting the upper surface of the silicon-on-insulator substrate is electrically connected to the vertical memory device through an upper strap diffusion region formed through a buried oxide layer. The upper strap diffusion region is formed by laterally etching a portion of the buried oxide region to produce a divot, in which doped polysilicon is deposited. The upper strap region diffusion region also provides the source for the vertical transistor of the vertical memory device. The vertical memory device may also be integrated with a support region having logic devices formed atop the silicon-on-insulator substrate.
摘要:
The present invention provides a vertical memory device formed in a silicon-on-insulator substrate, where a bitline contacting the upper surface of the silicon-on-insulator substrate is electrically connected to the vertical memory device through an upper strap diffusion region formed through a buried oxide layer. The upper strap diffusion region is formed by laterally etching a portion of the buried oxide region to produce a divot, in which doped polysilicon is deposited. The upper strap region diffusion region also provides the source for the vertical transistor of the vertical memory device. The vertical memory device may also be integrated with a support region having logic devices formed atop the silicon-on-insulator substrate.
摘要:
In a DRAM cell having a trench, a cell capacitor and a cell transistor, a node conducting element connects the cell capacitor to the cell transistor and a collar is disposed about the node conducting element. The collar is disposed in the substrate at least partially, up to entirely outside of the trench. Because the collar is disposed in the substrate outside of the trench, it does not restrict the size of the trench opening. This enables sub-100 nm trenches, using techniques which are compatible with contemporary DRAM process steps. A strap is embedded into a top surface of the collar.
摘要:
A transistor device and method of forming the same comprises a substrate; a first gate electrode over the substrate; a second gate electrode over the substrate; and a landing pad comprising a pair of flanged ends overlapping the second gate electrode, wherein the structure of the second gate electrode is discontinuous with the structure of the landing pad.
摘要:
In one embodiment, Hexagonal tiles encompassing a large are divided into three groups, each containing ⅓ of all hexagonal tiles that are disjoined among one another. Openings for the hexagonal tiles in each group are formed in a template layer, and a set of self-assembling block copolymers is applied and patterned within each opening. This process is repeated three times to encompass all three groups, resulting in a self-aligned pattern extending over a wide area. In another embodiment, the large area is divided into rectangular tiles of two non-overlapping and complementary groups. Each rectangular area has a width less than the range of order of self-assembling block copolymers. Self-assembled self-aligned line and space structures are formed in each group in a sequential manner so that a line and space pattern is formed over a large area extending beyond the range of order.