摘要:
An adhesive composition and methods incorporating the adhesive composition in semiconductor applications are provided. The adhesive composition is an instant setting adhesive composition that does not require external energy input such as heat or radiation such for application of the adhesive composition on a surface. The instant setting composition possesses sufficient thixotropic characteristics such that applying the instant setting adhesive composition to a surface can be accomplished by a variety of application techniques and in a variety of patterns. Once applied to the surface, the instant setting adhesive composition sets to retain the discrete pattern as applied, in a relatively short period of time, typically from about 0.10 to about 120 seconds at an ambient temperature, typically from 20° C. to 30° C. Advantageously, the instant setting adhesive composition can be screen printed on a semiconductor wafer prior to singulation because streets between the dice are essentially free of the instant setting adhesive composition.
摘要:
An adhesive composition and methods incorporating the adhesive composition in semiconductor applications are provided. The adhesive composition is an instant setting adhesive composition that does not require external energy input such as heat or radiation such for application of the adhesive composition on a surface. The instant setting composition possesses sufficient thixotropic characteristics such that applying the instant setting adhesive composition to a surface can be accomplished by a variety of application techniques and in a variety of patterns. Once applied to the surface, the instant setting adhesive composition sets to retain the discrete pattern as applied, in a relatively short period of time, typically from about 0.10 to about 120 seconds at an ambient temperature, typically from 20° C. to 30° C. Advantageously, the instant setting adhesive composition can be screen printed on a semiconductor wafer prior to singulation because streets between the dice are essentially free of the instant setting adhesive composition.
摘要:
An adhesive composition and methods incorporating the adhesive composition in semiconductor applications are provided. The adhesive composition is an instant setting adhesive composition that does not require external energy input such as heat or radiation such for application of the adhesive composition on a surface. The instant setting composition possesses sufficient thixotropic characteristics such that applying the instant setting adhesive composition to a surface can be accomplished by a variety of application techniques and in a variety of patterns. Once applied to the surface, the instant setting adhesive composition sets to retain the discrete pattern as applied, in a relatively short period of time, typically from about 0.10 to about 120 seconds at an ambient temperature, typically from 20° C. to 30° C. Advantageously, the instant setting adhesive composition can be screen printed on a semiconductor wafer prior to singulation because streets between the dice are essentially free of the instant setting adhesive composition.
摘要:
An adhesive composition and methods incorporating the adhesive composition in semiconductor applications are provided. The adhesive composition is an instant setting adhesive composition that does not require external energy input such as heat or radiation such for application of the adhesive composition on a surface. The instant setting composition possesses sufficient thixotropic characteristics such that applying the instant setting adhesive composition to a surface can be accomplished by a variety of application techniques and in a variety of patterns. Once applied to the surface, the instant setting adhesive composition sets to retain the discrete pattern as applied, in a relatively short period of time, typically from about 0.10 to about 120 seconds at an ambient temperature, typically from 20° C. to 30° C. Advantageously, the instant setting adhesive composition can be screen printed on a semiconductor wafer prior to singulation because streets between the dice are essentially free of the instant setting adhesive composition.
摘要:
A method and apparatus for improved stencil/screen print quality is disclosed. The stencil or screen assists in application of a printable material onto a substrate, such as an adhesive to a semiconductor die of a semiconductor wafer during a lead-on-chip (LOC) packaging process. In one embodiment, the stencil includes a coating applied to at least one surface of a pattern of the stencil or screen to retard running of the printable material onto the surface. In another embodiment, the stencil or screen includes a second coating applied to at least one other surface of the pattern to promote spreading of the printable material onto the substrate.
摘要:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
摘要:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
摘要:
Flip-chip semiconductor assemblies, each including integrated circuit (IC) dice and an associated substrate, are electrically tested before encapsulation using an in-line or in-situ test socket or probes at a die-attach station. Those assemblies using “wet” quick-cure epoxies for die-attachment may be tested prior to the epoxy being cured by pressing the integrated circuit (IC) dice against interconnection points on the substrate for electrical connection, while those assemblies using “dry” epoxies may be cured prior to testing. In either case, any failures in the dice or in the interconnections between the dice and the substrates can be easily fixed, and the need for the use of known-good-die (KGD) rework procedures during repair is eliminated.
摘要:
A method of applying a dispersion (which may be in the form of a paste) of particles of a thermoplastic polymer in a liquid medium (i.e., liquid carrier) onto semiconductor wafers, dies, lead frames, and printed circuit boards, for example, to form bonding layers, pads, and bumps, etc.
摘要:
A method of physically altering the backside surface of a semiconductor wafer or other substrate, and resulting article, to improve adhesion between the backside surface of semiconductor dice singulated from the wafer and a die attach adhesive or encapsulation compound. The physically altered backside surface reduces or substantially eliminates delamination and cracking damage in a semiconductor die assembly due to semiconductor wafer tape contamination and subsequent moisture penetration. The physically altered backside surface further reduces both semiconductor wafer tape contamination and shear stress along the interface between the semiconductor die backside surface and the die attach adhesive or encapsulation compound.