摘要:
A nonvolatile analog memory has a floating gate point. The nonvolatile analog memory includes a capacitor, a first current source, a second current source and a current adjuster. The first current source controlled by a voltage value at the floating gate point and generates a first current. The second current source controlled by the voltage value at the floating gate point and generates a second current. The current adjuster receives the output voltage and a reference voltage and adjusts the first current and the second current based on the output voltage and the reference voltage. The current adjuster charges or discharges the capacitor to equalize the output voltage to the reference voltage.
摘要:
A nonvolatile analog memory has a floating gate point. The nonvolatile analog memory includes a first current source, a second current source, and a current adjuster. The first current source generates a first current, and the second current source generates a second current. The current adjuster turns on or turns off a current path of the second current according to a reference current and the first current. Furthermore, when the current path of the second current is turned on, the first current is adjusted according to the second current, such that the first current is equal to the reference current.
摘要:
A nonvolatile analog memory has a floating gate point. The nonvolatile analog memory includes a capacitor. a first current source, a second current source and a current adjuster. The first current source controlled by a voltage value at the floating gate point and generates a first current. The second current source controlled by the voltage value at the floating gate point and generates a second current. The current adjuster receives the output voltage and a reference voltage and adjusts the first current and the second current based on the output voltage and the reference voltage. The current adjuster charges or discharges the capacitor to equalize the output voltage to the reference voltage.
摘要:
A nonvolatile analog memory has a floating gate point. The nonvolatile analog memory includes a first current source, a second current source, and a current adjuster. The first current source generates a first current, and the second current source generates a second current. The current adjuster turns on or turns off a current path of the second current according to a reference current and the first current. Furthermore, when the current path of the second current is turned on, the first current is adjusted according to the second current, such that the first current is equal to the reference current.
摘要:
A test region layout for testing shallow trench isolation gap fill characteristics is disclosed. Each test region further comprises at least one test pattern disposed in an interior portion of the test region. In a preferred embodiment, the test pattern is a square shape or, more preferably, two diametrically opposed “L” shapes which are discontinuous with respect to each other. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
Semiconductor substrate is disclosed having quantum wells having first bandgap, and quantum wells having second bandgap less than second bandgap. Semiconductor structure is disclosed comprising substrate having quantum wells having given bandgap, other quantum wells modified to bandgap greater than given bandgap. Semiconductor substrate is disclosed comprising wafer having quantum wells, section of first bandgap, and section of second bandgap greater than first bandgap. Method for forming semiconductor substrate is provided, comprising providing wafer having given bandgap, depositing dielectric cap on portion and rapid thermal annealing to tuned bandgap greater than given bandgap. Semiconductor structure is disclosed comprising substrate having quantum wells modified by depositing cap and rapid thermal annealing to tuned bandgap greater than given bandgap. Method for forming semiconductor substrate is disclosed, comprising providing wafer having quantum wells having given bandgap, depositing cap on portion and rapid thermal annealing to tuned bandgap greater than given bandgap.
摘要:
A test region layout for testing shallow trench isolation gap fill characteristics is disclosed. Each test region further comprises at least one test pattern disposed in an interior portion of the test region. In a preferred embodiment, the test pattern is a square shape or, more preferably, two diametrically opposed “L” shapes which are discontinuous with respect to each other. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
A method for removing at least one carbon doped oxide layer over a surface to recycle the semiconductor process wafer including providing a semiconductor wafer including a process surface including at least one carbon doped silicon oxide layer; oxidizing the carbon doped oxide layer according to an oxidizing treatment to convert at oxidize at least a portion of the carbon doped oxide layer to produce silicon oxide; and, wet etching the silicon oxide to substantially remove the silicon oxide.
摘要:
The reliability of an integrated circuit is inferred from the operational characteristics of sample metal oxide semiconductor (MOS) devices switchably coupled to drain/source bias and gate input voltages that are nominal, versus voltage and current conditions that elevate stress and cause temporary or permanent degradation, e.g., hot carrier injection (HCI), bias temperature instability (BTI, NBTI, PBTI), time dependent dielectric breakdown (TDDB). The MOS devices under test (preferably both PMOS and NMOS devices tested concurrently or in turn) are configured as current sources in the supply of power to a ring oscillator having cascaded inverter stages, thereby varying the oscillator frequency as a measure of the effects of stress on the devices under test, but without elevating the stress applied to the inverter stages.
摘要:
A pipelined ADC includes a first, second, and third pairs of comparators. The first pair of comparators compare an input voltage to a first positive reference voltage and to a first negative reference voltage. The second pair of comparators compare the input voltage to a second positive reference voltage and to a second negative reference voltage. Each comparator of the first and second pairs of comparators outputs a digital signal to an encoder. A third pair of comparators compares the input voltage to a third positive reference voltage and to a third negative reference voltage, and a comparator compares the input voltage to ground. The comparator and each comparator of the third pair of comparators is configured to output respective digital signals to an encoder. A multiplying digital-to-analog converter outputs a voltage based on the input voltage, an output from the encoder, and an output of the random number generator.