摘要:
The present invention provides a semiconductor device including a substrate, a deep well, a high-voltage well, and a doped region. The substrate and the high-voltage well have a first conductive type, and the deep well and the doped region have a second conductive type different from the first conductive type. The substrate has a high-voltage region and a low-voltage region, and the deep well is disposed in the substrate in the high-voltage region. The high-voltage well is disposed in the substrate between the high-voltage region and the low-voltage region, and the doped region is disposed in the high-voltage well. The doped region and the high-voltage well are electrically connected to a ground.
摘要:
The present invention provides a semiconductor device including a substrate, a deep well, a high-voltage well, and a doped region. The substrate and the high-voltage well have a first conductive type, and the deep well and the doped region have a second conductive type different from the first conductive type. The substrate has a high-voltage region and a low-voltage region, and the deep well is disposed in the substrate in the high-voltage region. The high-voltage well is disposed in the substrate between the high-voltage region and the low-voltage region, and the doped region is disposed in the high-voltage well. The doped region and the high-voltage well are electrically connected to a ground.
摘要:
The present invention provides a high-voltage semiconductor device including a deep well, a first doped region disposed in the deep well, a high-voltage well, a second doped region disposed in the high-voltage well, a first gate structure disposed on the high-voltage well between the second doped region and the first doped region, a doped channel region disposed in the high-voltage region and in contact with the second doped region and the deep well, and a third doped region disposed in the high-voltage well. The high-voltage well has a first conductive type, and the deep well, the first doped region, the second doped region, the doped channel region, and the third doped region have a second conductive type different from the first conductive type.
摘要:
The present invention provides a high-voltage semiconductor device including a deep well, a first doped region disposed in the deep well, a high-voltage well, a second doped region disposed in the high-voltage well, a first gate structure disposed on the high-voltage well between the second doped region and the first doped region, a doped channel region disposed in the high-voltage region and in contact with the second doped region and the deep well, and a third doped region disposed in the high-voltage well. The high-voltage well has a first conductive type, and the deep well, the first doped region, the second doped region, the doped channel region, and the third doped region have a second conductive type different from the first conductive type.
摘要:
The present invention provides a high voltage metal-oxide-semiconductor transistor device including a substrate, a deep well, and a doped region. The substrate and the doped region have a first conductive type, and the substrate has at least one electric field concentration region. The deep well has a second conductive type different from the first conductive type. The deep well is disposed in the substrate, and the doped region is disposed in the deep well. The doping concentrations of the doped region and the deep well in the electric field have a first ratio, and the doping concentrations of the doped region and the deep well outside the electric field have a second ratio. The first ratio is greater than the second ratio.
摘要:
The present invention provides a high voltage metal-oxide-semiconductor transistor device including a substrate, a deep well, and a doped region. The substrate and the doped region have a first conductive type, and the substrate has at least one electric field concentration region. The deep well has a second conductive type different from the first conductive type. The deep well is disposed in the substrate, and the doped region is disposed in the deep well. The doping concentrations of the doped region and the deep well in the electric field have a first ratio, and the doping concentrations of the doped region and the deep well outside the electric field have a second ratio. The first ratio is greater than the second ratio.
摘要:
A HV MOSFET device includes a substrate, a deep well region, a source/body region, a drain region, a gate structure, and a first doped region. The deep well region includes a boundary site and a middle site. The source/body region is formed in the deep well region and defines a channel region. The first doped region is formed in the deep well region and disposed under the gate structure, and having the first conductivity type. There is a first ratio between a dopant dose of the first doped region and a dopant dose of the boundary site of the deep well region. There is a second ratio between a dopant dose of the first doped region and a dopant dose of the middle site of the deep well region. A percentage difference between the first ratio and the second ratio is smaller than or equal to 5%.
摘要:
A HV MOSFET device includes a substrate, a deep well region, a source/body region, a drain region, a gate structure, and a first doped region. The deep well region includes a boundary site and a middle site. The source/body region is formed in the deep well region and defines a channel region. The first doped region is formed in the deep well region and disposed under the gate structure, and having the first conductivity type. There is a first ratio between a dopant dose of the first doped region and a dopant dose of the boundary site of the deep well region. There is a second ratio between a dopant dose of the first doped region and a dopant dose of the middle site of the deep well region. A percentage difference between the first ratio and the second ratio is smaller than or equal to 5%.