摘要:
The present invention provides a semiconductor device including a substrate, a deep well, a high-voltage well, and a doped region. The substrate and the high-voltage well have a first conductive type, and the deep well and the doped region have a second conductive type different from the first conductive type. The substrate has a high-voltage region and a low-voltage region, and the deep well is disposed in the substrate in the high-voltage region. The high-voltage well is disposed in the substrate between the high-voltage region and the low-voltage region, and the doped region is disposed in the high-voltage well. The doped region and the high-voltage well are electrically connected to a ground.
摘要:
The present invention provides a semiconductor device including a substrate, a deep well, a high-voltage well, and a doped region. The substrate and the high-voltage well have a first conductive type, and the deep well and the doped region have a second conductive type different from the first conductive type. The substrate has a high-voltage region and a low-voltage region, and the deep well is disposed in the substrate in the high-voltage region. The high-voltage well is disposed in the substrate between the high-voltage region and the low-voltage region, and the doped region is disposed in the high-voltage well. The doped region and the high-voltage well are electrically connected to a ground.
摘要:
The present invention provides a high-voltage semiconductor device including a deep well, a first doped region disposed in the deep well, a high-voltage well, a second doped region disposed in the high-voltage well, a first gate structure disposed on the high-voltage well between the second doped region and the first doped region, a doped channel region disposed in the high-voltage region and in contact with the second doped region and the deep well, and a third doped region disposed in the high-voltage well. The high-voltage well has a first conductive type, and the deep well, the first doped region, the second doped region, the doped channel region, and the third doped region have a second conductive type different from the first conductive type.
摘要:
The present invention provides a high-voltage semiconductor device including a deep well, a first doped region disposed in the deep well, a high-voltage well, a second doped region disposed in the high-voltage well, a first gate structure disposed on the high-voltage well between the second doped region and the first doped region, a doped channel region disposed in the high-voltage region and in contact with the second doped region and the deep well, and a third doped region disposed in the high-voltage well. The high-voltage well has a first conductive type, and the deep well, the first doped region, the second doped region, the doped channel region, and the third doped region have a second conductive type different from the first conductive type.
摘要:
A HV MOSFET device includes a substrate, a deep well region, a source/body region, a drain region, a gate structure, and a first doped region. The deep well region includes a boundary site and a middle site. The source/body region is formed in the deep well region and defines a channel region. The first doped region is formed in the deep well region and disposed under the gate structure, and having the first conductivity type. There is a first ratio between a dopant dose of the first doped region and a dopant dose of the boundary site of the deep well region. There is a second ratio between a dopant dose of the first doped region and a dopant dose of the middle site of the deep well region. A percentage difference between the first ratio and the second ratio is smaller than or equal to 5%.
摘要:
A HV MOSFET device includes a substrate, a deep well region, a source/body region, a drain region, a gate structure, and a first doped region. The deep well region includes a boundary site and a middle site. The source/body region is formed in the deep well region and defines a channel region. The first doped region is formed in the deep well region and disposed under the gate structure, and having the first conductivity type. There is a first ratio between a dopant dose of the first doped region and a dopant dose of the boundary site of the deep well region. There is a second ratio between a dopant dose of the first doped region and a dopant dose of the middle site of the deep well region. A percentage difference between the first ratio and the second ratio is smaller than or equal to 5%.
摘要:
A high voltage semiconductor device includes a substrate, an insulating layer positioned on the substrate, and a silicon layer positioned on the insulating layer. The silicon layer further includes at least a first doped strip, two terminal doped regions formed respectively at two opposite ends of the silicon layer and electrically connected to the first doped strip, and a plurality of second doped strips. The first doped strip and the terminal doped regions include a first conductivity type, the second doped strips include a second conductivity type, and the first conductivity type and the second conductivity type are complementary. The first doped strip and the second doped strips are alternately arranged.
摘要:
A high voltage semiconductor device includes a substrate, an insulating layer positioned on the substrate, and a silicon layer positioned on the insulating layer. The silicon layer further includes at least a first doped strip, two terminal doped regions formed respectively at two opposite ends of the silicon layer and electrically connected to the first doped strip, and a plurality of second doped strips. The first doped strip and the terminal doped regions include a first conductivity type, the second doped strips include a second conductivity type, and the first conductivity type and the second conductivity type are complementary. The first doped strip and the second doped strips are alternately arranged.
摘要:
A layout pattern of a high voltage metal-oxide-semiconductor transistor device includes a first doped region having a first conductivity type, a second doped region having the first conductivity type, and an non-continuous doped region formed in between the first doped region and the second doped region. The non-continuous doped region further includes a plurality of third doped regions, a plurality of gaps, and a plurality of fourth doped regions. The gaps and the third doped regions s are alternately arranged, and the fourth doped regions are formed in the gaps. The third doped regions include a second conductivity type complementary to the first conductivity type, and the fourth doped regions include the first conductivity type.
摘要:
A layout pattern of a high voltage metal-oxide-semiconductor transistor device includes a first doped region having a first conductivity type, a second doped region having the first conductivity type, and an non-continuous doped region formed in between the first doped region and the second doped region. The non-continuous doped region further includes a plurality of third doped regions, a plurality of gaps, and a plurality of fourth doped regions. The gaps and the third doped regions s are alternately arranged, and the fourth doped regions are formed in the gaps. The third doped regions include a second conductivity type complementary to the first conductivity type, and the fourth doped regions include the first conductivity type.