摘要:
A microfluidic device of a diagnostic and detection system includes an inlet port connected by one or more microchannels to an outlet port and includes a capture and visualization chamber (CVC) connected to at least one microchannel. A fluid to be analyzed can be mixed with magnetic microbeads that have an affinity to become bound to target components, such as pathogens in the fluid. The fluid including the magnetically bound target components can be injected through the microfluidic device. Magnetic field gradient, such as provided by permanent or electro-magnets, can be applied to the fluid and the magnetically bound target components flowing through the microfluidic device to cause the magnetically bound target components to migrate into the (CVC) and become separated from the fluid. The magnetically bound target components can be analyzed and tested using various techniques to detect the presence of specific organic and inorganic materials, such as pathogens in bio-fluids and contamination in liquid food sources (e.g. water). The device and method provide a system for rapidly detecting pathogens and contamination in relatively small fluid samples.
摘要:
A dialysis like therapeutic (DLT) device is provided. The DLT device includes at least one source channel connected at least one collection channels by one or more transfer channels. Fluid contacting surface of the channels can be an anti-fouling surface such as slippery liquid-infused porous surface (SLIPS). Fluids can be flown at high flow rates through the channels. The target components of the source fluid can be magnetic or bound to magnetic particles using an affinity molecule. A source fluid containing magnetically bound target components can be pumped through the source channel of the microfluidic device. A magnetic field gradient can be applied to the source fluid in the source channel causing the magnetically bound target components to migrate through the transfer channel into the collection channel. The collection channel can include a collection fluid to flush the target components out of the collection channel. The target components can be subsequently analyzed for detection and diagnosis. The source channel and the collection channels of the microfluidic device are analogous to the splenic arterioles and venules, respectively; the transfer channels mimic the vascular sinusoids of the spleen where opsonized particles are retained. Thus, the device acts as a dialysis like therapeutic device by combining fluidics and magnetics.
摘要:
The present invention is directed to systems and methods for delivering aerosolized micro-droplets into microfluidic devices. In some embodiments, the microfluidic devices are designed for the culture of living cells at an air interface. In some embodiments, the systems and methods described herein can be used to deliver aerosolized micro-droplet into detection systems and small animals, tissues, organs and organisms.
摘要:
A microfluidic device for separating target components from a source fluid includes one or more source channels connected to one or more collection channels by one or more transfer channels. The target components of the source fluid can be magnetic or bound to magnetic particles using a know binding agent. A source fluid containing magnetically bound target components can be pumped through the source channel of the microfluidic device. A magnetic field gradient can be applied to the source fluid in the source channel causing the magnetically bound target components to migrate through the transfer channel into the collection channel. The collection channel can include a collection fluid that is stagnant until a predefined volume of source fluid is processed or a predefined volume of target components accumulate in the collection channel, at which point collection fluid can be pumped into the collection channel to flush the target components out of the collection channel. The target components can be subsequently analyzed for detection and diagnosis.
摘要:
Described herein are microfluidic modules and methods for making the same, wherein the microfluidic modules include a substrate comprising at least one ether-based, aliphatic polyurethane, and at least one fluidic element disposed therein. The ether-based aliphatic polyurethane can be either the substrate of the microfluidic modules or a coating of another substrate material, such that at least a portion of the ether-based, aliphatic polyurethane is in fluid communication. In one embodiment, the ether-based, aliphatic polyurethane includes dicyclohexylmethane-4,4′-diisocyanate. As the ether-based aliphatic polyurethane can decrease absorption of molecules, e.g., hydrophobic molecules, in such microfluidic modules, the microfluidic modules described herein can be used in various applications such as drug screening and fluorescent microscopy.
摘要:
A microfluidic device for separating target components from a source fluid includes one or more source channels connected to one or more collection channels by one or more transfer channels. The target components of the source fluid can be magnetic or bound to magnetic particles using a know binding agent. A source fluid containing magnetically bound target components can be pumped through the source channel of the microfluidic device. A magnetic field gradient can be applied to the source fluid in the source channel causing the magnetically bound target components to migrate through the transfer channel into the collection channel. The collection channel can include a collection fluid that is stagnant until a predefined volume of source fluid is processed or a predefined volume of target components accumulate in the collection channel, at which point collection fluid can be pumped into the collection channel to flush the target components out of the collection channel. The target components can be subsequently analyzed for detection and diagnosis.
摘要:
A method and apparatus for continuously separating or concentrating particles that includes flowing two fluids in laminar flow through a magnetic field gradient which causes target particles to migrate to a waste fluid stream, and collecting each fluid stream after being flowed through the magnetic field gradient.
摘要:
A method and apparatus for continuously separating or concentrating particles that includes flowing two fluids in laminar flow through a magnetic field gradient which causes target particles to migrate to a waste fluid stream, and collecting each fluid stream after being flowed through the magnetic field gradient.
摘要:
Described herein are engineered microbe-targeting or microbe-binding molecules, kits comprising the same and uses thereof. Some particular embodiments of the microbe-targeting or microbe-binding molecules comprise a carbohydrate recognition domain of mannose-binding lectin, or a fragment thereof, linked to a portion of a Fc region. In some embodiments, the microbe-targeting molecules or microbe-binding molecules can be conjugated to a substrate, e.g., a magnetic microbead, forming a microbe-targeting substrate (e.g., a microbe-targeting magnetic microbead). Such microbe-targeting molecules and/or substrates and the kits comprising the same can bind and/or capture of a microbe and/or microbial matter thereof, and can thus be used in various applications, e.g., diagnosis and/or treatment of an infection caused by microbes such as sepsis in a subject or any environmental surface. Microbe-targeting molecules and/or substrates can be regenerated after use by washing with a low pH buffer or buffer in which calcium is insoluble.
摘要:
The present invention provides for engineered molecular opsonins that may be used to bind biological pathogens or identify subclasses or specific pathogen species for use in devices and systems for treatment and diagnosis of patients with infectious diseases, blood-borne infections or sepsis. An aspect of the invention provides for mannose-binding lectin (MBL), which is an abundant natural serum protein that is part of the innate immune system. The ability of this protein lectin to bind to surface molecules on virtually all classes of biopathogens (viruses, bacteria, fungi, protozoans) make engineered forms of MBL extremely useful in diagnosing and treating infectious diseases and sepsis.