摘要:
The present invention relates to a method of forming a small gap using CMP and a method for manufacturing a lateral FED. In the present invention, a small gap is determined by the thickness of an oxide film, and so uniform small gaps of about 100 Å that have been impossible to attain with the art of prior lithography can be formed with repeatability. Prior lateral field emission devices have the problem of repeatability in forming a gap for field emission because they are fabricated by means of a thermal stress method or an electrical stress method. But if the method of forming a small gap according to the present invention is used to fabricate a lateral FED, a FED can be made that has low voltage drive and high current drive characteristics and uniform field emission characteristics.
摘要:
A flash memory device and/or methods of forming the flash memory device are provided, the flash memory device including a charge storage gate, a gate pattern over the charge storage gate, and a charge storage metal layer disposed between a side surface of the charge storage gate and the gate pattern. The methods include forming a preliminary charge storage gate pattern and forming a metal layer over a side surface of the preliminary charge storage gate pattern.
摘要:
In a floating gate memory cell including a floating gate separated from an active region by a tunnel isolation region, a first one of the active region and the floating gate comprises a portion that protrudes towards a second one of the active region and the floating gate. In some embodiments, the protruding portion tapers toward the second one of the active region and the floating gate. The tunnel insulation layer may be narrowed at the protruding portion. Protruding portions may be formed on both the floating gate and the active region.
摘要:
In a floating gate memory cell including a floating gate separated from an active region by a tunnel isolation region, a first one of the active region and the floating gate comprises a portion that protrudes towards a second one of the active region and the floating gate. In some embodiments, the protruding portion tapers toward the second one of the active region and the floating gate. The tunnel insulation layer may be narrowed at the protruding portion. Protruding portions may be formed on both the floating gate and the active region.
摘要:
A semiconductor memory device is fabricated by forming an active region protruding from a semiconductor substrate, forming an isolation layer on the substrate adjacent opposing sidewalls of the active region, and forming a floating gate electrode on a surface of the active region between the opposing sidewalls thereof. The floating gate electrode is formed to extend beyond edges of the surface of the active region onto the isolation layer. A surface of the floating gate electrode adjacent the active region defines a plane, and the isolation layer is confined between the plane and the substrate. A control gate electrode is formed on a surface of the floating gate electrode opposite the active region. The control gate electrode may be formed to extend along sidewalls of the floating gate electrode towards the substrate beyond the plane defined by the surface of the floating gate electrode adjacent the active region. Related devices are also discussed.
摘要:
In a floating gate memory cell including a floating gate separated from an active region by a tunnel isolation region, a first one of the active region and the floating gate comprises a portion that protrudes towards a second one of the active region and the floating gate. In some embodiments, the protruding portion tapers toward the second one of the active region and the floating gate. The tunnel insulation layer may be narrowed at the protruding portion. Protruding portions may be formed on both the floating gate and the active region.
摘要:
A semiconductor device and method of production are disclosed, the method including forming a preliminary gate electrode on a semiconductor substrate, the preliminary gate electrode including a gate oxide layer pattern and a conductive layer pattern stacked on the gate oxide layer pattern, and performing a re-oxidation process for curing damage of the semiconductor substrate and/or a sidewall of the conductive layer pattern, when the preliminary gate electrode is formed by forming an oxide layer on an outer surface of the preliminary gate electrode and on the semiconductor substrate, by supplying an oxygen gas and a chlorine-including gas while restraining a thickness of the gate oxide layer pattern from being increased; and the semiconductor device comprising a preliminary gate electrode formed on a semiconductor substrate, the preliminary gate electrode including a gate oxide layer pattern and a conductive layer pattern stacked on the gate oxide layer pattern, and a re-oxidized semiconductor substrate and/or a sidewall of the conductive layer pattern, with damage cured therein by supplying an oxygen gas and a chlorine-including gas while restraining a thickness of the gate oxide layer pattern from being increased.
摘要:
Methods of fabricating a vertical cell semiconductor device including forming a hole passing through a stacked structure of alternating insulating and sacrificial layers on a substrate, forming an amorphous silicon layer conforming to an inner wall of the hole, forming a silicon region on the amorphous silicon layer, and metal induced crystallizing the amorphous silicon layer via the silicon region to form a single-crystalline channel structure in the hole.
摘要:
A semiconductor device and method of production are disclosed, the method including forming a preliminary gate electrode on a semiconductor substrate, the preliminary gate electrode including a gate oxide layer pattern and a conductive layer pattern stacked on the gate oxide layer pattern, and performing a re-oxidation process for curing damage of the semiconductor substrate and/or a sidewall of the conductive layer pattern, when the preliminary gate electrode is formed by forming an oxide layer on an outer surface of the preliminary gate electrode and on the semiconductor substrate, by supplying an oxygen gas and a chlorine-including gas while restraining a thickness of the gate oxide layer pattern from being increased; and the semiconductor device comprising a preliminary gate electrode formed on a semiconductor substrate, the preliminary gate electrode including a gate oxide layer pattern and a conductive layer pattern stacked on the gate oxide layer pattern, and a re-oxidized semiconductor substrate and/or a sidewall of the conductive layer pattern, with damage cured therein by supplying an oxygen gas and a chlorine-including gas while restraining a thickness of the gate oxide layer pattern from being increased.
摘要:
Methods of fabricating a vertical cell semiconductor device including forming a hole passing through a stacked structure of alternating insulating and sacrificial layers on a substrate, forming an amorphous silicon layer conforming to an inner wall of the hole, forming a silicon region on the amorphous silicon layer, and metal induced crystallizing the amorphous silicon layer via the silicon region to form a single-crystalline channel structure in the hole.