摘要:
Processes for forming interconnection layers having tight pitch interconnect structures within a dielectric layer, wherein trenches and vias used to formed interconnect structures have relatively low aspect ratios prior to metallization. The low aspect ratios may reduce or substantially eliminated the potential of voids forming within the metallization material when it is deposited. Embodiments herein may achieve such relatively low aspect ratios through processes that allows for the removal of structures, which are utilized to form the trenches and the vias, prior to metallization.
摘要:
Self-aligned via and plug patterning using diagonal hardmasks for improved overlay in fabricating back end of line (BEOL) interconnects is described. In an example, a method of fabricating an interconnect structure for an integrated circuit involves forming a first hardmask layer above an interlayer dielectric layer disposed above a substrate. The first hardmask layer includes a plurality of first hardmask lines having a first grating in a first direction and comprising one or more sacrificial materials interleaved with the first grating. The method also involves forming a second hardmask layer above the first hardmask layer. The second hardmask layer includes a plurality of second hardmask lines having a second grating in a second direction, diagonal to the first direction. The method also involves, using the second hardmask layer as a mask, etching the first hardmask layer to form a patterned first hardmask layer. The etching involves removing a portion of the one or more sacrificial materials.
摘要:
Self-aligned via and plug patterning using diagonal hardmasks for improved overlay in fabricating back end of line (BEOL) interconnects is described. In an example, a method of fabricating an interconnect structure for an integrated circuit involves forming a first hardmask layer above an interlayer dielectric layer disposed above a substrate. The first hardmask layer includes a plurality of first hardmask lines having a first grating in a first direction and comprising one or more sacrificial materials interleaved with the first grating. The method also involves forming a second hardmask layer above the first hardmask layer. The second hardmask layer includes a plurality of second hardmask lines having a second grating in a second direction, diagonal to the first direction. The method also involves, using the second hardmask layer as a mask, etching the first hardmask layer to form a patterned first hardmask layer. The etching involves removing a portion of the one or more sacrificial materials.
摘要:
Self-aligned via and plug patterning using diagonal hardmasks for improved overlay in fabricating back end of line (BEOL) interconnects is described. In an example, a method of fabricating an interconnect structure for an integrated circuit involves forming a first hardmask layer above an interlayer dielectric layer disposed above a substrate. The first hardmask layer includes a plurality of first hardmask lines having a first grating in a first direction and comprising one or more sacrificial materials interleaved with the first grating. The method also involves forming a second hardmask layer above the first hardmask layer. The second hardmask layer includes a plurality of second hardmask lines having a second grating in a second direction, diagonal to the first direction. The method also involves, using the second hardmask layer as a mask, etching the first hardmask layer to form a patterned first hardmask layer. The etching involves removing a portion of the one or more sacrificial materials.
摘要:
Self-aligned via and plug patterning using diagonal hardmasks for improved overlay in fabricating back end of line (BEOL) interconnects is described. In an example, a method of fabricating an interconnect structure for an integrated circuit involves forming a first hardmask layer above an interlayer dielectric layer disposed above a substrate. The first hardmask layer includes a plurality of first hardmask lines having a first grating in a first direction and comprising one or more sacrificial materials interleaved with the first grating. The method also involves forming a second hardmask layer above the first hardmask layer. The second hardmask layer includes a plurality of second hardmask lines having a second grating in a second direction, diagonal to the first direction. The method also involves, using the second hardmask layer as a mask, etching the first hardmask layer to form a patterned first hardmask layer. The etching involves removing a portion of the one or more sacrificial materials.
摘要:
Techniques are disclosed for forming interconnects in porous dielectric materials. In accordance with some embodiments, the porosity of a host dielectric layer may be reduced temporarily by stuffing its pores with a sacrificial pore-stuffing material, such as titanium nitride (TiN), titanium dioxide (TiO2), or other suitable sacrificial material having a high etch selectivity compared to the metallization and dielectric material of the interconnect. After interconnect formation within the stuffed dielectric layer, the sacrificial pore-stuffing material can be removed from the pores of the host dielectric. In some cases, removal and curing can be performed with minimal or otherwise negligible effect on the dielectric constant (κ-value), leakage performance, and/or time-dependent dielectric breakdown (TDDB) properties of the host dielectric layer. Some embodiments can be utilized, for example, in processes involving atomic layer deposition (ALD)-based and/or chemical vapor deposition (CVD)-based backend metallization of highly porous, ultra-low-κ (ULK) dielectric materials.
摘要:
Self-aligned via and plug patterning with photobuckets for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate, the first layer having a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The integrated circuit also includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines of the second grating. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating. The integrated circuit also includes a region of dielectric material disposed between the metal lines of the first grating and the metal lines of the second grating, and in a same plane as upper portions of the dielectric lines of the first grating and lower portions of the dielectric lines of the second grating. The region of dielectric material is composed of a cross-linked photolyzable material.
摘要:
Self-aligned via and plug patterning with photobuckets for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate, the first layer having a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The integrated circuit also includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines of the second grating. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating. The integrated circuit also includes a region of dielectric material disposed between the metal lines of the first grating and the metal lines of the second grating, and in a same plane as upper portions of the dielectric lines of the first grating and lower portions of the dielectric lines of the second grating. The region of dielectric material is composed of a cross-linked photolyzable material.
摘要:
Self-aligned via and plug patterning with photobuckets for back end of line (BEOL) interconnects is described. In an example, an interconnect structure for an integrated circuit includes a first layer of the interconnect structure disposed above a substrate, the first layer having a first grating of alternating metal lines and dielectric lines in a first direction. The dielectric lines have an uppermost surface higher than an uppermost surface of the metal lines. The integrated circuit also includes a second layer of the interconnect structure disposed above the first layer of the interconnect structure. The second layer includes a second grating of alternating metal lines and dielectric lines in a second direction, perpendicular to the first direction. The dielectric lines have a lowermost surface lower than a lowermost surface of the metal lines of the second grating. The dielectric lines of the second grating overlap and contact, but are distinct from, the dielectric lines of the first grating. The integrated circuit also includes a region of dielectric material disposed between the metal lines of the first grating and the metal lines of the second grating, and in a same plane as upper portions of the dielectric lines of the first grating and lower portions of the dielectric lines of the second grating. The region of dielectric material is composed of a cross-linked photolyzable material.
摘要:
Described herein are techniques structures related to forming barrier walls, capping, or alloys/compounds such as treating copper so that an alloy or compound is formed, to reduce electromigration (EM) and strengthen metal reliability which degrades as the length of the lines increases in integrated circuits.