摘要:
Provided are semiconductor devices that include an active pattern on a substrate, first and second gate electrodes on the active pattern and arranged in a first direction relative to one another and a first source/drain region in a first trench that extends into the active pattern between the first and second gate electrodes. The first source/drain region includes a first epitaxial layer that is configured to fill the first trench and that includes at least one plane defect that originates at a top portion of the first epitaxial layer and extends towards a bottom portion of the first epitaxial layer.
摘要:
An impedance calibration apparatus of a semiconductor integrated circuit includes: a D/A conversion unit configured to receive a code and generate an analog voltage depending on the code; a virtual code voltage generation unit configured to detect a level of the analog voltage and generate a plurality of virtual code voltages based on the level of the analog voltage; a comparison unit configured to receive the plurality of virtual code voltages and a reference voltage as inputs, and compare the plurality of virtual code voltages with the reference voltage to generate a plurality of comparison signals; and a code generation unit configured to receive the plurality of comparison signals and generate the code using the plurality of comparison signals.
摘要:
A display device includes: a first insulation substrate having an upper surface and a lower surface; a transparent conductive layer disposed on the upper surface of the first insulation substrate; a gate line disposed on the lower surface of the first insulation substrate; a gate insulating layer disposed on the gate line; a semiconductor layer disposed on the gate insulating layer; a data line disposed on the semiconductor layer and connected to a source electrode and a drain electrode facing the source electrode; and a pixel electrode electrically connected to the drain electrode, where the gate line, the gate insulating layer, the semiconductor layer and the data line are sequentially disposed on the lower surface of the first insulation substrate.
摘要:
A display device includes a first substrate including a first surface, on which a touch by an external object occurs, and a second surface opposite to the first surface, a plurality of driving signal lines positioned on the second surface of the first substrate, where the plurality of driving signal lines transmits a driving signal for displaying an image, a plurality of pixels including a plurality of switching elements connected to the plurality of driving signal lines, a sensing signal line positioned on one of the first surface and the second surface of the first substrate, where the sensing signal line transmits a sensing signal generated based on the touch by the external object, and a touch sensor unit including a sensing capacitor defined by at least one driving signal line of the plurality of driving signal lines and the sensing signal line.
摘要:
A semiconductor apparatus comprises of a first semiconductor chip having a through silicon via (TSV) and a second semiconductor chip also having a TSV, wherein the respective semiconductor chips are stacked vertically and are connected through a conductive connection member without the assistance of an additional bump between the conductive connection member and the second semiconductor chip.
摘要:
A method of driving a touch display panel includes sequentially providing gate signals to a plurality of gate lines, outputting data signals to a plurality of data lines, the data lines being disposed on the first surface and crossing the gate lines, and reading out a first sensing signal through a plurality of sensing lines in response to the gate signals. The gate lines are disposed on a first surface of a base substrate, the touch display panel including the base substrate. The data signals are synchronized with the gate signals. The sensing line is disposed on a second surface of the base substrate, the second surface being opposite to the first surface.
摘要:
A touch panel is provided that includes: a substrate; a plurality of X-axis lines disposed on the substrate; a plurality of Y-axis lines crossing the plurality of X-axis lines; and an insulating layer interposed between the X-axis lines and the Y-axis lines, in which at least one first X-axis line and at least one second X-axis line selected from among the plurality of X-axis lines are connected by a first connection portion, and among the plurality of Y-axis lines, a Y-axis line crossing the first X-axis line and the second X-axis line has a first area in a region where the Y-axis line overlaps the first X-axis line and a second area in a region where the Y-axis line overlaps the second X-axis line, and the first area and the second area are different from each other.
摘要:
An integrated circuit that detects whether a through silicon via has defects or not, at a wafer level. The integrated circuit includes a semiconductor substrate, a through silicon via configured to be formed in the semiconductor substrate to extend to a certain depth from the surface of the semiconductor substrate, an output pad, and a current path providing unit configured to provide a current, flowing between the semiconductor substrate and the through silicon via, to the output pad during a test mode.
摘要:
A semiconductor device includes a first internal voltage driving unit configured to drive an internal voltage, a second internal voltage driving unit configured to drive the internal voltage in an operation period corresponding to an enable signal, a current amount detection unit configured to detect amount of current supplied by the first internal voltage driving unit, and a current amount comparison unit configured to compare the amount of detected current by the current amount detection unit with amount of a reference current, and determine whether or not to activate the enable signal in response to a comparison result.
摘要:
A semiconductor device includes an enable unit configured to enable an output terminal, a feedback unit configured to receive an output of the output terminal and output a feedback signal, an amplifying unit configured to amplify a difference between a reference signal and the feedback signal, and a transfer unit configured to transfer an amplified signal of the amplifying unit as an enable control signal of the enable unit, and to have an output resistance value smaller than an output resistance value of the amplifying unit.