Method of Forming Laterally Distributed LEDs
    1.
    发明申请
    Method of Forming Laterally Distributed LEDs 有权
    形成分布式LED的方法

    公开(公告)号:US20100197060A1

    公开(公告)日:2010-08-05

    申请号:US12366609

    申请日:2009-02-05

    IPC分类号: H01L33/00

    CPC分类号: H01L27/153

    摘要: A method of forming laterally distributed light emitting diodes (LEDs) is disclosed. A first buffer layer with a first type of conductivity is formed on a semiconductor substrate, and a dielectric layer is formed on the first buffer layer. The dielectric layer is patterned to form a first patterned space therein, followed by forming a first active layer in the first patterned space. The dielectric layer is then patterned to form a second patterned space therein, followed by forming a second active layer in the second patterned space. Second buffer layers with a second type of conductivity are then formed on the first active layer and the second active layer. Finally, electrodes are formed on the second buffer layers and on the first buffer layer.

    摘要翻译: 公开了形成横向分布式发光二极管(LED)的方法。 在半导体衬底上形成具有第一导电类型的第一缓冲层,并且在第一缓冲层上形成电介质层。 图案化电介质层以在其中形成第一图案化空间,随后在第一图案化空间中形成第一有源层。 然后将介电层图案化以在其中形成第二图案化空间,随后在第二图案化空间中形成第二有源层。 然后在第一有源层和第二有源层上形成具有第二类导电性的第二缓冲层。 最后,在第二缓冲层和第一缓冲层上形成电极。

    Method of forming laterally distributed LEDs
    2.
    发明授权
    Method of forming laterally distributed LEDs 有权
    形成横向分布式LED的方法

    公开(公告)号:US07888152B2

    公开(公告)日:2011-02-15

    申请号:US12366609

    申请日:2009-02-05

    IPC分类号: H01L21/00

    CPC分类号: H01L27/153

    摘要: A method of forming laterally distributed light emitting diodes (LEDs) is disclosed. A first buffer layer with a first type of conductivity is formed on a semiconductor substrate, and a dielectric layer is formed on the first buffer layer. The dielectric layer is patterned to form a first patterned space therein, followed by forming a first active layer in the first patterned space. The dielectric layer is then patterned to form a second patterned space therein, followed by forming a second active layer in the second patterned space. Second buffer layers with a second type of conductivity are then formed on the first active layer and the second active layer. Finally, electrodes are formed on the second buffer layers and on the first buffer layer.

    摘要翻译: 公开了形成横向分布式发光二极管(LED)的方法。 在半导体衬底上形成具有第一导电类型的第一缓冲层,并且在第一缓冲层上形成电介质层。 图案化电介质层以在其中形成第一图案化空间,随后在第一图案化空间中形成第一有源层。 然后对电介质层进行图案化以在其中形成第二图案化空间,随后在第二图案化空间中形成第二有源层。 然后在第一有源层和第二有源层上形成具有第二类导电性的第二缓冲层。 最后,在第二缓冲层和第一缓冲层上形成电极。

    Light emitting device and fabrication method therefor
    3.
    发明申请
    Light emitting device and fabrication method therefor 有权
    发光元件及其制造方法

    公开(公告)号:US20090278165A1

    公开(公告)日:2009-11-12

    申请号:US12291396

    申请日:2008-11-07

    IPC分类号: H01L33/00 H01L21/00

    CPC分类号: H01L33/10 H01L33/12 H01L33/32

    摘要: A light emitting device (LED) structure formed on a Group IV-based semiconductor substrate is provided. The LED structure includes a Group IV-based substrate, an AlN nucleation layer formed on the Group IV-based substrate, a GaN epitaxial layer formed on the AlN nucleation layer, a distributed Bragg reflector (DBR) multi-layer structure formed on the epitaxial layer, and an LED active layer formed on the DBR multi-layer structure.

    摘要翻译: 提供了在基于IV族的半导体衬底上形成的发光器件(LED)结构。 LED结构包括基于IV族的衬底,在基于IV族的衬底上形成的AlN成核层,在AlN成核层上形成的GaN外延层,形成在外延层上的分布式布拉格反射器(DBR)多层结构 层和形成在DBR多层结构上的LED活性层。

    Method for forming III-nitrides semiconductor epilayer on the semiconductor substrate
    4.
    发明申请
    Method for forming III-nitrides semiconductor epilayer on the semiconductor substrate 审中-公开
    在半导体衬底上形成III族氮化物半导体外延层的方法

    公开(公告)号:US20090098714A1

    公开(公告)日:2009-04-16

    申请号:US12010242

    申请日:2008-01-23

    IPC分类号: H01L21/205

    摘要: GaN layer on semiconductor substrate is grown by using GaN nanorod buffer layer. Firstly, semiconductor substrate is cleaned and thermally degassed to remove the contaminant in the growth chamber. After the above step, the GaN nanorods layer is grown under the N-rich condition. Then, GaN epilayer is overgrown on the GaN nanorods layer under the Ga-rich condition for forming Group of III-Nitrides semiconductor layer on the semiconductor substrate.

    摘要翻译: 通过使用GaN纳米棒缓冲层来生长半导体衬底上的GaN层。 首先,对半导体衬底进行清洁并热脱气以除去生长室中的污染物。 在上述步骤之后,在富氮条件下生长GaN纳米棒层。 然后,在半导体衬底上形成III族氮化物半导体层的Ga富集条件下,在GaN纳米棒层上过度生长GaN外延层。

    Growth of GaAs expitaxial layers on Si substrate by using a novel GeSi buffer layer
    5.
    发明申请
    Growth of GaAs expitaxial layers on Si substrate by using a novel GeSi buffer layer 审中-公开
    通过使用新颖的GeSi缓冲层在GaAs衬底上生长GaAs外延层

    公开(公告)号:US20070134901A1

    公开(公告)日:2007-06-14

    申请号:US11652639

    申请日:2007-01-12

    IPC分类号: H01L21/28

    摘要: This invention provides a process for growing Ge epitaixial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and subsequently growing a GaAs layer on Ge film of the surface of said Ge epitaixial layers by using metal organic chemical vapor deposition (MOCVD). The process comprises steps of, firstly, pre-cleaning a silicon wafer in a standard cleaning procedure, dipping it with HF solution and prebaking to remove its native oxide layer. Then, growing a high Ge-composition epitaixial layer, such as Si0.1Ge0.9 in a thickness of 0.8 μm on said Si substrate by using ultra-high vacuum chemical vapor deposition under certain conditions. Thus, many dislocations are generated and located near the interface and in the low of part of Si0.1Ge0.9 due to the large mismatch between this layer and Si substrate. Furthermore, a subsequent 0.8 μm Si0.05Ge0.95 layer, and/or optionally a further 0.8 μm Si0.02Ge0.98 layer, are grown. They form strained interfaces of said layers can bend and terminate the propagated upward dislocation very effectively. Therefore, a film of pure Ge is grown on the surface of said epitaixial layers. Finally, a GaAs epitaixial layer is grown on said Ge film by using MOCVD.

    摘要翻译: 本发明提供了一种通过使用超高真空化学气相沉积(UHVCVD)在Si衬底上生长Ge表面层的方法,随后通过使用金属有机化学气相沉积在所述Ge附着层的表面的Ge膜上生长GaAs层 (MOCVD)。 该方法包括以下步骤:首先,在标准清洁程序中预清洁硅晶片,用HF溶液浸渍并预烘烤以除去其天然氧化物层。 然后,通过使用超高真空化学气相沉积在所述Si衬底上生长厚度为0.8μm的高Ge组成的表层,例如Si 0.1 O 0.1 Ge 0.9 在某些条件下 因此,由于该层和Si衬底之间的大的失配,产生许多位错并且位于界面附近和部分低Ge Ge 0.9的部分位置。 此外,随后的0.8μm的Si 0.05 Al 0.1 O 0.95层和/或任选的另外的0.8μm的Si 0.02 Co 0.98 < SUB>层,生长。 它们形成所述层的应变界面可以非常有效地弯曲和终止传播的向上错位。 因此,在所述附着层的表面上生长纯Ge的膜。 最后,通过使用MOCVD在所述Ge膜上生长GaAs外延层。

    Light emitter device
    7.
    发明授权
    Light emitter device 有权
    发光器件

    公开(公告)号:US07977687B2

    公开(公告)日:2011-07-12

    申请号:US12291396

    申请日:2008-11-07

    IPC分类号: H01L33/00

    CPC分类号: H01L33/10 H01L33/12 H01L33/32

    摘要: A light emitting device (LED) structure formed on a Group IV-based semiconductor substrate is provided. The LED structure includes a Group IV-based substrate, an AlN nucleation layer formed on the Group IV-based substrate, a GaN epitaxial layer formed on the AlN nucleation layer, a distributed Bragg reflector (DBR) multi-layer structure formed on the epitaxial layer, and an LED active layer formed on the DBR multi-layer structure.

    摘要翻译: 提供了在基于IV族的半导体衬底上形成的发光器件(LED)结构。 LED结构包括基于IV族的衬底,在基于IV族的衬底上形成的AlN成核层,在AlN成核层上形成的GaN外延层,形成在外延层上的分布式布拉格反射器(DBR)多层结构 层和形成在DBR多层结构上的LED活性层。

    Architecture of a n-type metal-oxide-semiconductor transistor with a compressive strained silicon-germanium channel fabricated on a silicon (110) substrate
    8.
    发明申请
    Architecture of a n-type metal-oxide-semiconductor transistor with a compressive strained silicon-germanium channel fabricated on a silicon (110) substrate 审中-公开
    具有在硅(110)衬底上制造的压应变硅 - 锗通道的n型金属氧化物半导体晶体管的结构

    公开(公告)号:US20070205444A1

    公开(公告)日:2007-09-06

    申请号:US11431697

    申请日:2006-05-11

    IPC分类号: H01L29/76

    摘要: The present invention discloses an architecture of a NMOS transistor with a compressive strained Si—Ge channel fabricated on a silicon (110) substrate, which comprises: a p-silicon (110) substrate, two n+ ion-implanted regions functioning as the source and the drain respectively, a compressive strained Si—Ge channel layer, and a gate structure. The compressive strained Si—Ge channel layer is grown on the p-silicon (110) substrate to reduce the electron conductivity effective mass in the [1_l -10] crystallographic direction and to promote the electron mobility in the [1-10] crystallographic direction. Thus, the present invention can improve the electron mobility of a NMOS transistor via the channels fabricated on the silicon (110) substrate. Further, the NMOS transistor of the present invention can combine with a high-speed PMOS transistor on a silicon (110) substrate to form a high-performance CMOS transistor on the same silicon (110) substrate.

    摘要翻译: 本发明公开了一种具有在硅(110)衬底上制造的压应变Si-Ge沟道的NMOS晶体管的架构,其包括:p-硅(110)衬底,两个n + - 分别用作源极和漏极的施加区域,压缩应变Si-Ge沟道层和栅极结构。 压缩应变Si-Ge沟道层生长在p-硅(110)衬底上,以降低[1-1]晶体方向的电子传导有效质量,并促进[1-10]晶体学中的电子迁移率 方向。 因此,本发明可以通过在硅(110)衬底上制造的沟道来改善NMOS晶体管的电子迁移率。 此外,本发明的NMOS晶体管可以与硅(110)衬底上的高速PMOS晶体管组合,以在相同的硅(110)衬底上形成高性能CMOS晶体管。

    Technique to grow high quality ZnSe epitaxy layer on Si substrate
    9.
    发明授权
    Technique to grow high quality ZnSe epitaxy layer on Si substrate 失效
    在Si衬底上生长高品质ZnSe外延层的技术

    公开(公告)号:US07071087B2

    公开(公告)日:2006-07-04

    申请号:US10859764

    申请日:2004-06-03

    IPC分类号: H01L21/28 H01L21/3205

    摘要: A technique to grow high quality and large area ZnSe layer on Si substrate is provided, comprising growing GexSi1−x/Ge epitaxial layers on Si substrate by using ultra-high vacuum chemical vapor deposition (UHVCVD), and finally growing a ZnSe film on top Ge buffer layers.Two concepts are applied in the process of this invention, the first one is to block the dislocations generated from GexSi1−x epitaxial layers and to terminate the propagated upward dislocations by using strained interfaces, accordingly the dislocation density of ZnSe layer is greatly reduced and the surface roughness is improved; the second concept is to solve the problems of anti-phase domain due to growth of polar materials on non-polar material using off-cut angle Si substrate, and that is free from diffusion problems between different atoms while generally growing ZnSe layers on Si substrate.

    摘要翻译: 提供了在Si衬底上生长高质量和大面积ZnSe层的技术,其包括在Si衬底上生长Ge x Si x Si 1-x / Ge外延层, 高真空化学气相沉积(UHVCVD),最后在顶部Ge缓冲层上生长ZnSe膜。 在本发明的方法中应用了两个概念,第一个概念是为了阻止由Ge x 1 Si 1-x N外延层产生的位错并终止传播的向上位错 通过使用应变界面,ZnSe层的位错密度大大降低,表面粗糙度提高; 第二个概念是解决极性材料在非极性材料上使用偏角Si衬底生长的反相域问题,并且在不同原子之间没有扩散问题,而在Si衬底上通常生长ZnSe层 。

    High Energy Density and Low Leakage Electronic Devices

    公开(公告)号:US20170194098A1

    公开(公告)日:2017-07-06

    申请号:US15462954

    申请日:2017-03-20

    申请人: Chun-Yen Chang

    发明人: Chun-Yen Chang

    IPC分类号: H01G4/06 H01G4/30 H01G4/008

    摘要: A magnetic capacitor includes a first electrode layer formed by depositing a first conducting material including graphene, a second electrode layer formed by depositing a second conducting material including graphene, and an insulator layer located between the first electrode layer and the second electrode layer. The magnetic capacitor further includes a first magnetized layer that includes one or more first ferro-magnetic elements that are magnetized to apply a first magnetic field to the insulator layer, and a second magnetized layer that includes one or more second ferro-magnetic elements that are magnetized to apply a second magnetic field to the insulator layer. The insulator layer is located between the first magnetized layer and the second magnetized layer. The first magnetic field and the second magnetic field improve a first electrical property of the magnetic capacitor.