Abstract:
Provided are an adhesive agent capable of providing sufficient electrical continuity to a substrate to which a preflux treatment has been applied and a method for connecting electronic components. There is used an adhesive agent comprising a (meth)acrylate having an epoxy group in one molecule and a radical polymerization initiator having a one minute half-life temperature of 110 degrees C. or more. A surplus adhesive agent component between terminals flows, whereby an imidazole component in a preflux, the component binding to an epoxy group of an epoxy group-containing acrylate, is drawn out thereby to be removed from a surface of the terminal.
Abstract:
To provide an insulating resin film, which contains: a first adhesive layer; and a second adhesive layer, wherein the insulating resin film is configured to bond a substrate and an electronic part together, and the first adhesive layer is provided at a side of the substrate and the second adhesive layer is provided at a side of the electronic part, wherein the first adhesive layer and the second adhesive layer each contain inorganic filler, wherein the second adhesive layer has a DSC exothermic peak temperature that is higher than a DSC exothermic peak temperature of the first adhesive layer, and wherein a thickness of the first adhesive layer is 50% to 90% of a total thickness of the insulating resin film.
Abstract:
A connection body capable of achieving fine pitch and miniaturization, and a method of manufacturing the connection body. A connection body includes: a substrate having a first terminal array; a connector having second terminal array; and an adhesive layer formed by curing a thermosetting connection material connecting the first terminal array and the second terminal array, wherein the second terminal array is disposed on the bottom surface of the connector and forms a level difference canceling portion for canceling a level difference in the bottom surface, and wherein the thermosetting connection material contains solder particles and a flux component. Thus, the first terminal array and the second terminal array can be connected, so that the terminal array can be made to have a fine pitch, and the connected body can be miniaturized.
Abstract:
A method for manufacturing a smart card capable of achieving excellent connection reliability and bending resistance, a smart card, and a conductive particle-containing hot-melt adhesive sheet. A conductive particle-containing hot-melt adhesive sheet containing solder particles of a non-eutectic alloy in a binder containing a crystalline polyamide having a carboxyl group is interposed between a card member and an IC chip and subjected to thermocompression bonding. The crystalline polyamide having a carboxyl group improves the solder wettability of the non-eutectic alloy, thereby achieving excellent connection reliability. This effect is considered to be a flux effect due to the carboxyl group present in the crystalline polyamide, and as a result, it is possible to prevent the decrease in the elastic modulus of the adhesive layer which would be caused by the addition of a flux compound and to achieve excellent bending resistance.