Abstract:
A polyester polyol comprising at least one esterified unit of formula (I) wherein L is a difunctional aliphatic group having from two to six carbon atoms and R is a C1-C4 alkyl group.
Abstract:
Provided is a two-component composition comprising one or more polyisocyanate and one or more hybrid polyol comprising reaction residues of (i). one initiator polyol having N hydroxyl groups, wherein N is 2 or greater, and wherein the number-average molecular weight of said initiator polyol is 900 or lower, (ii). one or more anhydride, and (iii). two or more alkylene oxides having the structure wherein said R3 is hydrogen or an alkyl group, wherein the mole ratio of said reaction residues of anhydride to said reaction residues of initiator polyol is N:1 or less; and wherein the mole ratio of said reaction residues (iii) to said reaction residues of initiator polyol is 20:1 or less wherein at least one said reaction residue of an anhydride is attached directly to one of said reaction residues of a higher-alkylene oxide.
Abstract:
A polyester polyol comprising at least one esterified unit of formula (I) wherein L is a difunctional aliphatic group having from two to six carbon atoms and R is a C1-C4 alkyl group.
Abstract:
Provided is a method of forming a laminated structure comprising I bringing a component A into contact with a component B to form an adhesive composition, II forming a layer of said adhesive composition on one surface of a first film, and III bringing the surface of a second film into contact with said layer of adhesive composition; wherein said component A comprises one or more polyisocyanate, and wherein said component B comprises one or more hybrid polyol. Also provided is a laminate structure made by that method.
Abstract:
A polyester polyol is formed in a polycondensation reaction between an aromatic dicarboxylic acid, a polyol, and an epoxy compound having a straight chain alkyl or alkenyl group having at least six carbon atoms. The polyester polyol exhibits excellent compatibility with hydrocarbon blowing agents. As such, it is a useful component in rigid polyurethane foam formulations that are contain hydrocarbon blowing agents.
Abstract:
Embodiments of the invention provide for polyurethane-based sealants. The sealants include a reaction product of a reaction system which includes at least one isocyanate, and at least one polyester polyol. The polyester polyol includes a reaction product of a polyester reaction mixture which includes one or more hydrophobic monomers, one or more organic diacids or methyl esters thereof, and one or more diols.
Abstract:
Polyester-co-carbonate polyols and methods for producing the same are provided. The method comprises reacting one or more alcohols having an OH functionality of two or more with one or more organic diacids to form a reaction mixture, adding a first amount of dialkyl carbonate to the reaction mixture to remove water remaining from the reaction mixture by azeotropic drying, adding a transesterification catalyst to the dialkyl carbonate containing reaction mixture and adding a second amount of dialkyl carbonate to the catalyst containing reaction mixture.
Abstract:
A polyester polyol is formed in a polycondensation reaction between an aromatic dicarboxylic acid, a polyol, and an epoxy compound having a straight chain alkyl or alkenyl group having at least six carbon atoms. The polyester polyol exhibits excellent compatibility with hydrocarbon blowing agents. As such, it is a useful component in rigid polyurethane foam formulations that are contain hydrocarbon blowing agents.