摘要:
Articulating mechanisms, link systems, and components thereof, useful for a variety of purposes including, but not limited to, the remote manipulation of instruments such as surgical or diagnostic instruments or tools, are provided. The link systems include links wherein torque can be transferred between at least two adjacent links while allowing for pivoting motion between the links. Mechanisms for preventing undesired lateral movement of links relative to one another are also provided.
摘要:
A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
摘要:
A system for deploying needles in tissue includes a controller and a visual display. A treatment probe has both a needle and tines deployable from the needle which may be advanced into the tissue. The treatment probe also has adjustable stops which control the deployed positions of both the needle and the tines. The adjustable stops are coupled to the controller so that the virtual treatment and safety boundaries resulting from the treatment can be presented on the visual display prior to actual deployment of the system.
摘要:
The invention provides articulating mechanisms, and flexible members and flexible segments that can form such articulating mechanisms. The mechanisms are useful, for example, for remote steering, guidance and/or manipulation of various instruments and tools at a targeted location. The mechanisms, members or segments include links connected by flexible hinges. The proximal and distal ends of the mechanisms are connected by at least one set of cables in such a fashion that a proximal active flexible segment forms a discrete pair with a distal active flexible segment. Movement of active flexible segments at the proximal end of the mechanism results in a corresponding, relative movement of segments at the distal end of the mechanism. This configuration allows each flexible segment pair to move independently of one another and also permits the articulating mechanism to undergo complex movements and adopt complex configurations.
摘要:
The invention provides an articulating mechanism useful, for example, for remote manipulation of various surgical instruments and diagnostic tools within, or to, regions of the body. Movement of segments at the proximal end of the mechanism results in a corresponding, relative movement of segments at the distal end of the mechanism. The proximal and distal segments are connected by a set of cables in such a fashion that each proximal segment forms a discrete pair with a distal segment. This configuration allows each segment pair to move independently of one another and also permits the articulating mechanism to undergo complex movements and adopt complex configurations. The articulating mechanisms may also be combined in such a way to remotely mimic finger movements for manipulation of an object or body tissue.
摘要:
The invention provides surgical or diagnostic tools and associated methods that offer improved user control for operating remotely within regions of the body. These tools include a proximally-located actuator for the operation of a distal end effector, as well as proximally-located actuators for articulational and rotational movements of the end effector. Control mechanisms and methods refine operator control of end effector actuation and of these articulational and rotational movements. A rotation lock provides for enablement and disablement of rotatability of the end effector. The tool may also include other features. A multi-state ratchet for end effector actuation provides enablement-disablement options with tactile feedback. A force limiter mechanism protects the end effector and manipulated objects from the harm of potentially excessive force applied by the operator. An articulation lock allows the fixing and releasing of both neutral and articulated configurations of the tool and of consequent placement of the end effector.
摘要:
The invention provides an articulating mechanism useful, for example, for remote manipulation of various surgical instruments and diagnostic tools within, or to, regions of the body. Movement of segments at the proximal end of the mechanism results in a corresponding, relative movement of segments at the distal end of the mechanism. The proximal and distal segments are connected by a set of cables in such a fashion that each proximal segment forms a discrete pair with a distal segment. This configuration allows each segment pair to move independently of one another and also permits the articulating mechanism to undergo complex movements and adopt complex configurations. The articulating mechanisms may also be combined in such a way to remotely mimic finger movements for manipulation of an object or body tissue.
摘要:
A sheath useful for remote steering, guidance and/or manipulation of a flexible instrument, including e.g. an endoscope, received through the sheath.
摘要:
A flexible segment system including: a first link; a first flexible hinge integral to the first link; and a second link integral to and continuing from the first flexible hinge.
摘要:
The invention provides articulating mechanisms, and flexible members and flexible segments that can form such articulating mechanisms. The mechanisms are useful, for example, for remote steering, guidance and/or manipulation of various instruments and tools at a targeted location. The mechanisms, members or segments include links connected by flexible hinges. The proximal and distal ends of the mechanisms are connected by at least one set of cables in such a fashion that a proximal active flexible segment forms a discrete pair with a distal active flexible segment. Movement of active flexible segments at the proximal end of the mechanism results in a corresponding, relative movement of segments at the distal end of the mechanism. This configuration allows each flexible segment pair to move independently of one another and also permits the articulating mechanism to undergo complex movements and adopt complex configurations.