摘要:
The laser illuminated image producing system includes in one form of the invention, a single light valve which not only serves to form an image, but also to increase the number of its colors. In another form of the invention, the lasers are sequenced at high input energy for short intervals of time to provide high average output luminosity at lower average energy costs.
摘要:
The laser illuminated image projection system includes a microlaser array coupled with a beam shaper to produce an exceptionally bright projection light beam. In one embodiment, the beam shaper includes a binary phase plate to modify the shape and intensity profile of the projection light beam. In another embodiment, the beam shaper includes a microlens array arrangement. In yet another embodiment, the beam shaper includes a diffuser arrangement. A light valve modifies the projection light beam to generate an output light beam indicative of an image. A projection lens arrangement focuses the output light beam onto a remote surface to reproduce the image thereon.
摘要:
Apparatus and methods are disclosed for transforming a laser beam to a polarized shaped beam in, for example, a frequency converted laser system. In one embodiment, an anamorphic optical system includes a first prism and a second prism that can be configured to form a Brewster telescope, the first prism and second prism each having an input surface and an exit surface, and wherein at least one surface of the input or exit surfaces are coated with a polarization selective coating. The optical system can include an adjustment system configured to change the position of one or both of the first prism and the second prism to adjust the transformation of the shape of the laser beam. In some embodiments of the optical system, a configuration of the first prism, the second prism, and the polarization selective coating produce a laser beam having a polarization ratio of about 100:1 or higher.
摘要:
A display system includes blue, green, and red laser light sources and light shaping devices which receive the laser light from the laser light sources and shapes the light into a number of approximately identical beamlets. The beamlets are modulated individually and the modulated beamlets are combined. The combining results in an output of beamlets, each of which comprises three input beamlets of each of the colors red, green, and blue. The resultant beamlets can then be scanned onto a display screen.
摘要:
An image projection system employing microlaser and/or diode laser arrays. Each laser in each array is individually addressable. The system includes three linear laser arrays, one red, one green, and one blue, each individually addressable laser being powered and modulated in accordance with the input image signal. When microlaser arrays, which are energized by laser diode pumps, are used, the laser diode pumps are formed in equivalent arrays. The laser output beams are combined in a dichroic prism and reflected off a rotating multifaceted scanning mirror which effects two dimensional scanning as it rotates. The image beam reflected from the scanner passes through an imaging lens, a speckle eliminator and then onto the projection screen. The invention also includes the method of generating and scanning the image beam, as well as the novel speckle eliminator and the microlaser array configured for optimally close spacing to achieve the desired result. In one embodiment, the laser diode pumps are directly modulated by the video signal, while in another embodiment the microlaser outputs are modulated utilizing a spatial light modulator array.
摘要:
A longitudinally-cooled laser element assembly comprises an optically transparent heat sink (OTH) coupled to a laser element and a heat sink. An etalon structure including a first flat surface and a second, substantially parallel flat surface is formed in the laser element and/or the OTH. In some embodiments, a balanced etalon is provided by forming a reflector on the second flat surface of the etalon that has a reflectivity approximately equal to the Fresnel loss at the interface between the OTH and the laser element. In some embodiments the laser element assembly includes a second OTH coupled to the laser element at a second interface, thereby defining a second Fresnel loss. Preferably, the second OTH has an index of refraction substantially equal to the index of refraction of the first OTH, so that said first and second Fresnel losses are approximately equal and a balanced etalon is formed. In some embodiments the laser element comprises a solid-state gain medium. In other embodiments the laser element comprises a nonlinear frequency conversion crystal. An intracavity frequency-converted laser is described in which OTHs are used to cool both the gain medium and the nonlinear material.
摘要:
A monolithic diode pumped solid-state laser (11) comprising as the laser host neodymium-doped yttrium orthovanadate (Nd:YVO.sub.4) (12, 52) or neodymium-doped gadolinium orthovanadate (Nd:GdVO.sub.4) (57, 67) operating on the .sup.4 F.sub.3/2 .fwdarw..sup.4 I.sub.9/2 (.about.914 nm or .about.912 nm respectively) transition, to which a suitable nonlinear optic material (16), such as potassium niobate (KNbO.sub.3) or beta barium borate (BBO), is bonded. The nonlinear crystal gives rise to intracavity frequency doubling to .about.457 or .about.456 nm. The microlaser is a composite cavity formed from a gain medium crystal and a nonlinear frequency doubling material which together have four spaced parallel dielectrically coated faces (14, 17, 18, 15) and which is positioned in close proximity to a diode laser pump source (13) for phase-matched harmonic generation of blue light along an axis of propagation which lies substantially perpendicular to the two faces of the composite cavity. By employing specific doping concentration-lengths products of lasant material and pumping the gain medium which has a specific crystalline orientation the desired efficient blue microlaser is achieved. Alternative embodiments combine the Nd:YVO.sub.4 and Nd:GdVO.sub.4 elements to enhance certain output characteristics of the laser.
摘要:
Apparatus and methods are disclosed for transforming a laser beam to a polarized shaped beam in, for example, a frequency converted laser system. In one embodiment, an anamorphic optical system includes a first prism and a second prism that can be configured to form a Brewster telescope, the first prism and second prism each having an input surface and an exit surface, and wherein at least one surface of the input or exit surfaces are coated with a polarization selective coating. The optical system can include an adjustment system configured to change the position of one or both of the first prism and the second prism to adjust the transformation of the shape of the laser beam. In some embodiments of the optical system, a configuration of the first prism, the second prism, and the polarization selective coating produce a laser beam having a polarization ratio of about 100:1 or higher.
摘要:
Various embodiments of an optical system for directing light for optical measurements such laser-induced fluorescence and spectroscopic analysis are disclosed. In some embodiments, the optical system includes a thermally conductive housing and a thermoelectric controller, a plurality of optical fibers, and one or more optical elements to direct light emitted by the optical fibers to illuminate a flow cell. The housing is configured to attach to a flow cell.
摘要:
A diode-pumped solid-state laser including a short wavelength (e.g., blue, violet, or UV) semiconductor laser that pumps an absorption transition in a rare-earth-doped material. Responsive to this pumping, the rare-earth active ion directly emits laser radiation. A number of different wavelength outputs, including short wavelengths, are achievable dependent upon the material and the pump wavelength. The gain medium may include an active ion selected from Er3+ Sm3+, Eu3+, Tb3+, Dy3+, Tm3+, Ho3+, and Pr3+. A laser diode pump source has a wavelength in the range of about 365 nm to 480 nm to excite a laser emission in the range of 370 to 800 nm. The laser diode pump source may comprise a GaN-based semiconductor. In some embodiments, the laser diode pump source supplies a pump beam in a range of 370–380 nm, 400–415 nm, 435–445 nm, or 468–478 nm.