摘要:
According to one exemplary embodiment, a method for forming a contact over a silicide layer situated in a semiconductor die comprises a step of depositing a barrier layer on sidewalls of a contact hole and on a native oxide layer situated at a bottom of the contact hole, where the sidewalls are defined by the contact hole in a dielectric layer. The step of depositing the barrier layer on the sidewalls of the contact hole and on the native oxide layer can be optimized such that the barrier layer has a greater thickness at a top of the contact hole than a thickness at the bottom of the contact hole. According to this exemplary embodiment, the method further comprises a step of removing a portion of the barrier layer and the native oxide layer situated at the bottom of the contact hole to expose the silicide layer.
摘要:
According to one exemplary embodiment, a method for forming a contact over a silicide layer situated in a semiconductor die comprises a step of depositing a barrier layer on sidewalls of a contact hole and on a native oxide layer situated at a bottom of the contact hole, where the sidewalls are defined by the contact hole in a dielectric layer. The step of depositing the barrier layer on the sidewalls of the contact hole and on the native oxide layer can be optimized such that the barrier layer has a greater thickness at a top of the contact hole than a thickness at the bottom of the contact hole. According to this exemplary embodiment, the method further comprises a step of removing a portion of the barrier layer and the native oxide layer situated at the bottom of the contact hole to expose the silicide layer.
摘要:
The present invention is a semiconductor contact formation system and method. Contact insulation regions are formed with multiple etch stop sublayers that facilitate formation of contacts. This contact formation process provides relatively small substrate connections while addressing critical lithographic printing limitation concerns in forming contact holes with small dimensions. In one embodiment, a multiple etch stop insulation layer comprising multiple etch stop layers is deposited. A contact region is formed in the multiple etch stop insulation layer by selectively removing (e.g., etching) some of the multiple etch stop insulation layer. In one embodiment, a larger portion of the multiple etch stop insulation layer is removed close to the metal layer and a smaller portion is removed closer to the substrate. The different contact region widths are achieved by performing multiple etching processes controlled by the multiple etch stop layers in the multiple etch stop insulation layer and spacer formation to shrink contact size at a bottom portion. Electrical conducting material (e.g., tungsten) is deposited in the contact region.
摘要:
A method of preventing UV charging of flash NVROM cells during fabrication and a device thereby formed. During device fabrication, a UV blocking layer is deposited over the floating gates. The UV blocking layer substantially blocks UV from entering the gate regions so as to prevent electron mobility sufficient to render the cells unprogrammable or unerasable. The reduced electron migration during processing of the NVROM leads to increased yield and reliability of the devices.
摘要:
The present invention is a semiconductor contact formation system and methods that form contact insulation regions comprising multiple etch stop sublayers that facilitate formation of contacts. This contract formation process provides relatively small substrate connections while addressing critical lithographic printing limitation concerns in forming contact holes with small dimensions. In one embodiment, a multiple etch stop contact formation process in which a multiple etch stop insulation layer comprising multiple etch stop layers is deposited. A contact region is formed in the multiple etch stop insulation layer by selectively removing (e.g., etching) some of the multiple etch stop insulation layer. In one embodiment a larger portion of the multiple etch stop insulation layer is removed close to the metal layer and a smaller portion is removed closer to the substrate. The different contact region width are achieved by performing multiple etching processes controlled by the multiple etch stop layers in the multiple etch stop insulation layer and spacer formation to shrink contact size at a bottom portion. Electrical conducting material (e.g., tungsten) is deposited in the contact region.
摘要:
A method of manufacturing a semiconductor. A conventional bottom anti-reflective coating is applied over a reflective surface, for example an inter-layer dielectric. A second anti-reflective coating is deposited over the first anti-reflective coating. The second anti-reflective coating is organic and may be deposited through a spin-on process. The organic anti-reflective coating may be deposited with more exacting optical properties and better control of the layer thickness than conventional bottom anti-reflective coatings applied via chemical vapor deposition processes. The combination of the two layers of anti-reflective materials, the materials having differing optical properties, demonstrates superior control of reflections from underlying materials compared with conventional art methods. More particularly, an organic anti-reflective coating in conjunction with an inorganic anti-reflective coating may cancel reflections across a wide range of thicknesses in an underlying dielectric layer. The superior anti-reflective structure of embodiments of the present invention allow patterning of semiconductor structures at smaller critical dimensions with greater accuracy, rendering competitive advantages in device speed, density and cost.
摘要:
The present invention is a method and system for eliminating voids in a semiconductor device. The method comprises the steps of forming metal lines over a semiconductor substrate, forming a first oxide layer utilizing a high density plasma deposition technique, forming a second oxide layer utilizing a carbon free resin and forming a topside dielectric layer. Through the use of a method in accordance with the present invention, the voids that are created in the dielectric films during conventional semiconductor processing methodology are eliminated. The use of a high density plasma deposition technique provides a more directional deposition that can get between metal lines that are separated by smaller gaps. The dielectric films are thereby strengthened, which increases the reliability of the semiconductor device. Furthermore, by utilizing hydrogen silsesquiloxane instead of a conventional spin-on glass, there is no concern regarding carbon contamination since hydrogen silsesquiloxane doesn't contain carbon atoms.
摘要:
This invention describes improved apparatus and methods for spin-on deposition of semiconductor thin films. The improved apparatus provides for controlled temperature, pressure and gas compositions within the deposition chamber. The improved methods comprise dispensing of solutions containing thin film precursor via a moveable dispensing device and the careful regulation of the pattern of deposition of the precursor solution onto the wafer. The invention also comprises the careful regulation of deposition variables including dispensation time, wafer rpm, stop time and rates of wafer rotation. In one embodiment, the precursor solution is dispensed from the outer edge of the wafer toward the center. In alternative embodiments, processors regulate the movement of the dispensing arm and the precursor pump to provide an evenly dispensed layer of precursor solution. The invention also describes improved methods for evaporating solvents and curing thin films. The methods of this invention enable the production of spin-on thin films, which have more even film thickness and uniformity. The semiconductor thin films produced by the methods of this invention are useful for the manufacture of semiconductor devices comprising interlevel dielectric materials.
摘要:
This invention describes improved apparatus and methods for spin-on deposition of semiconductor thin films. The improved apparatus provides for controlled temperature, pressure and gas compositions within the deposition chamber. The improved methods comprise dispensing of solutions containing thin film precursor via a moveable dispensing device and the careful regulation of the pattern of desposition of the precursor solution onto the wafer. The invention also comprises the careful regulation of deposition variables including dispensation time, wafer rpm, stop time and rates of wafer rotation. In one embodiment, the precursor solution is dispensed from the outer edge of the wafer toward the center. In alternative embodiments, processors regulate the movement of the dispensing arm and the precursor pump to provide an evenly dispensed layer of precursor solution. The invention also describes improved methods for evaporating solvents and curing thin films. The methods of this invention enable the production of spin-on thin films, which have more even film thickness and uniformity. The semiconductor thin films produced by the methods of this invention are useful for the manufacture of semiconductor devices comprising interlevel dielectric materials.
摘要:
An oxide hard mask is formed between a deep ultraviolet photoresist and an anti-reflective coating to prevent interactions with the photoresist, thereby preventing reduction of a critical dimension of a patterned conductive layer. Embodiments include depositing a substantially nitrogen free oxide layer on the anti-reflective coating, such as a silicon oxide derived from tertaethyl orthosilicate by plasma enhanced chemical vapor deposition.