摘要:
A metal-insulator-metal capacitor is embedded in an interconnect layer of an integrated circuit (IC). The interconnect layer has a cavity, and the capacitor is formed in the cavity with one of the plates of the capacitor integral with a conductive layer of the interconnect layer, so the capacitor plate electrically communicates with the interconnect layer. The interconnect layer has multiple conductive layers, including a layer, such as aluminum, that is subject to deformation at certain temperatures during fabrication of the IC, and the cavity extends through this layer. A remaining conductive layer of the interconnect layer defines one of the capacitor plates, and a dielectric layer and another capacitor plate are formed thereon within the cavity. Via interconnects of about the same length electrically connect to the top plate and through the interconnect layer to the bottom plate.
摘要:
A metal-insulator-metal capacitor is embedded in an interconnect layer of an integrated circuit (IC). The interconnect layer has a cavity, and the capacitor is formed in the cavity with one of the plates of the capacitor integral with a conductive layer of the interconnect layer, so the capacitor plate electrically communicates with the interconnect layer. The interconnect layer has multiple conductive layers, including a layer, such as aluminum, that is subject to deformation at certain temperatures during fabrication of the IC, and the cavity extends through this layer. A remaining conductive layer of the interconnect layer defines one of the capacitor plates, and a dielectric layer and another capacitor plate are formed thereon within the cavity. Via interconnects of about the same length electrically connect to the top plate and through the interconnect layer to the bottom plate.
摘要:
A method for redirecting void diffusion away from vias in an integrated circuit design includes steps of forming an electrical conductor in a first electrically conductive layer of an integrated circuit design, forming a via between a distal end of the electrical conductor and a second electrically conductive layer of the integrated circuit design, and reducing tensile stress in the electrical conductor to divert void diffusion away from the via.
摘要:
A process for forming a low k carbon-doped silicon oxide dielectric material (lkc-dsodm) on an integrated circuit structure is characterized by improved planarity and good gap fill in high aspect ratio regions of the integrated circuit structure, as well as improved film strength and adherence, and less byproducts trapped in the film. The process comprises: depositing a plurality of layers of lkc-dsodm on an integrated circuit structure in a reactor; and pausing after depositing each layer of lkc-dsodm and before depositing a further layer of lkc-dsodm. The process can further include first forming a base or barrier layer of a silicon-rich and nitrogen-rich dielectric material over the integrated circuit structure, plasma etching the upper surface of the barrier layer to facilitate adhesion of the subsequently deposited lkc-dsodm to the barrier layer, and then, before depositing the first layer of lkc-dsodm, cooling the etched barrier layer down to within 10° C. or less of the subsequent deposition temperature used for formation of the film of lkc-dsodm. In another aspect of the invention the pausing step further includes, before deposition of the next layer of lkc-dsodm, flowing a source of non-reactive gas over the surface of the newly deposited layer of lkc-dsodm to facilitate outgassing and removal of byproducts resulting from the preceding formation and deposition of lkc-dsodm.
摘要:
A low dielectric material is applied, as by spinning on, over the passivation layer of a semiconductor chip to fill the gaps which may exist between the top layer metal lines, and thereby minimize the possibility of cross talk which might otherwise be present between those lines.
摘要:
A low dielectric material is applied, as by spinning on, over the passivation layer of a semiconductor chip to fill the gaps which may exist between the top layer metal lines, and thereby minimize the possibility of cross talk which might otherwise be present between those lines.
摘要:
A method of creating a layer-to-layer alignment mark in a semiconductor wafer includes the step of depositing a first conductor layer on a substrate associated with the semiconductor wafer. The method also includes the step of fabricating a number of alignment trenches in the first conductor layer. Moreover, the method includes the step of depositing a first insulator layer on the first conductor layer so as to fill the number of alignment trenches. Yet further, the method includes the step of removing material associated with the first insulator layer from the number of alignment trenches such that an upper surface of the first conductor layer and an upper surface of the first insulator layer define a first alignment step feature which possesses a predetermined height. The method also includes the step of depositing a second conductor layer on the semiconductor wafer subsequent to the removing step. A semiconductor wafer is also disclosed.
摘要:
A method for forming a bipolar emitter using doped SOG which employs diffusion instead of implanting, and which produces a shallow, low-resistance emitter using a variety of dopants besides boron and phosphorus. A layer of doped SOG is spun over a predefined base region. Portions of the SOG layer are defined for removal and removed, leaving the collector and emitter contact areas exposed. The SOG layer is densified and the dopants are driven into the base to form the emitter.
摘要:
There is disclosed a method for producing a spin-on glass composition with a high carbon content for use as coating layers on substrates such as semiconductor silicon wafers. Also provided are spin-on glass compositions with polyorganosiloxanes having at least 30 wt.% carbon. These spin-on glass compositions show improved resistance to O.sub.2 concentration variations during etching and have an extended shelf-life of more than one year. Methods of using these spin-on glass compositions and semiconductor products produced therefrom are also provided.
摘要:
A method of forming a carbon nanotube fuse by depositing a carbon nanotube layer, then depositing a cap layer directly over the carbon nanotube layer. The cap layer is formed of a material that has an insufficient amount of oxygen to significantly oxidize the carbon nanotube layer under operating conditions, and is otherwise sufficiently robust to protect the carbon nanotube layer from oxygen and plasmas. A photoresist layer is formed over the cap layer, and the photoresist layer is patterned to define a desired size of fuse. Both the cap layer and the carbon nanotube layer are completely etched, without removing the photoresist layer, to define the fuse having two ends in the carbon nanotube layer. Just the cap layer is etched, without removing the photoresist layer, so as to reduce the cap layer by a desired amount at the edges of the cap layer under the photoresist layer, without damaging the carbon nanotube layer. The photoresist layer is removed, and electrically conductive contacts are formed on each of the two ends of the fuse.