摘要:
A method of protecting devices within an integrated circuit during electro-static discharge (ESD) testing using an ESD test system is provided. The method includes applying a direct current (DC) bias voltage to an input of at least one device of the integrated circuit and applying an ESD simulated signal to at least one other input of the integrated circuit. The applied ESD simulated signal is conducted along a first current path to a first ground, while a low-current signal associated with the at least one device is conducted along a second current path to the second ground. The DC bias voltage is maintained between the input of the at least one device and the second ground at a substantially constant value in response to a signal variation on the second ground that results from the applied ESD simulated signal.
摘要:
Structures and methods are provided for nanosecond electrical pulse anneal processes. The method of forming an electrostatic discharge (ESD) N+/P+ structure includes forming an N+ diffusion on a substrate and a P+ diffusion on the substrate. The P+ diffusion is in electrical contact with the N+ diffusion. The method further includes forming a device between the N+ diffusion and the P+ diffusion. A method of annealing a structure or material includes applying an electrical pulse across an electrostatic discharge (ESD) N+/P+ structure for a plurality of nanoseconds.
摘要翻译:为纳秒电脉冲退火工艺提供了结构和方法。 形成静电放电(ESD)N + / P +结构的方法包括在衬底上形成N +扩散,并在衬底上形成P +扩散。 P +扩散与N +扩散电接触。 该方法还包括在N +扩散和P +扩散之间形成器件。 退火结构或材料的方法包括跨多个纳秒的静电放电(ESD)N + / P +结构施加电脉冲。
摘要:
A silicon control rectifier and an electrostatic discharge protection device of an integrated circuit including the silicon control rectifier. The silicon control rectifier includes a silicon body formed in a silicon layer in direct physical contact with a buried oxide layer of a silicon-on-insulator substrate, a top surface of the silicon layer defining a horizontal plane; and an anode of the silicon control rectifier formed in a first region of the silicon body and a cathode of the silicon control rectifier formed in an opposite second region of the silicon body, wherein a path of current flow between the anode and the cathode is only in a single horizontal direction parallel to the horizontal plane.
摘要:
A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a P+-N body diode and an N+-P body diode. The P+-N body diode and the N+-P body diode are laterally integrated.
摘要:
A design structure for a circuit providing the same trigger voltage across the multiple fingers is provided, which comprises a data representing an external current injection source connected to individual fingers of a multi-finger semiconductor device. For example, the external injection current is supplied to the body of a MOSFET or the gate of a thyristor. The magnitude of the supplied current from each external current injection source is adjusted so that each finger has the same trigger voltage. The external current supply circuit may comprise diodes or an RC triggered MOSFET. The components of the external current supply circuit may be tuned to achieve a desired predetermined trigger voltage across all fingers of the multi-finger semiconductor device.
摘要:
An electrostatic discharge (ESD) power clamp circuit including a RC-delay element coupled to a plurality of serialized inverter elements with a power clamp element and an ESD-triggered keeper device coupled to the plurality of inverters. During negative mode ESD events, the ESD-triggered keeper device is activated and assists the power clamp element to pull up and strongly conduct current to protect the circuit. Additionally, a method of ESD protection in a circuit is provided. The method includes coupling a RC-delay element to an input of a plurality of serialized inverter elements, coupling an output of the plurality of serialized inverters with an ESD-triggered keeper device and a power clamp element, triggering the ESD-triggered keeper device to turn on during negative ESD events and conducting current by the power clamp element with assistance of the ESD-triggered keeper device to protect the circuit as a result of negative ESD events.
摘要:
A Silicon on Insulator (SOI) Integrated Circuit (IC) chip with devices such as a vertical Silicon Controlled Rectifier (SCR), vertical bipolar transistors, a vertical capacitor, a resistor and/or a vertical pinch resistor and method of making the device(s). The devices are formed in a seed hole through the SOI surface layer and insulator layer to the substrate. A buried diffusion, e.g., N-type, is formed through the seed hole in the substrate. A doped epitaxial layer is formed on the buried diffusion and may include multiple doped layers, e.g., a P-type layer and an N-type layer. Polysilicon, e.g., P-type, may be formed on the doped epitaxial layer. Contacts to the buried diffusion are formed in a contact liner.
摘要:
A silicon control rectifier, a method of making the silicon control rectifier and the use of the silicon control rectifier as an electrostatic discharge protection device of an integrated circuit. The silicon control rectifier includes a silicon body formed in a silicon layer in direct physical contact with a buried oxide layer of a silicon-on-insulator substrate, a top surface of the silicon layer defining a horizontal plane; and an anode of the silicon control rectifier formed in a first region of the silicon body and a cathode of the silicon control rectifier formed in an opposite second region of the silicon body, wherein a path of current flow between the anode and the cathode is only in a single horizontal direction parallel to the horizontal plane.
摘要:
The present invention provides a method in which a low-resistance connection between the MOS channel and silicided source/drain regions is provided that has an independence from the extension ion implant process as well as device overlap capacitance. The method of the present invention broadly includes selectively removing outer spacers of an MOS structure and then selectively plating a metallic or intermetallic material on exposed portions of a semiconductor substrate that were previously protected by the outer spacers. The present invention also provides a semiconductor structure that is formed utilizing the method. The semiconductor structure includes a low-resistance connection between the silicided source/drain regions and the channel regions which includes a selectively plated metallic or intermetallic material.