摘要:
A fuel processing system is operative to remove substantially all of the sulfur present in a logistic fuel stock supply. The fuel stock can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The system is a part of a fuel cell power plant. The fuel stock supply is fed through a reformer where the fuel is converted to a hydrogen rich fuel which contains hydrogen sulfide. The hydrogen sulfide-containg reformer exhaust is passed through a sulfur scrubber, to which is added a small quantity of air, which scrubber removes substantially all of the sulfur in the exhaust stream by means of the Claus reaction. The desulfurizing step causes sulfur to deposit on the scrubber bed, which after a period of time, will prevent further sulfur from being removed from the reformer exhaust stream. The sulfur scrubber station is rejuvenated by passing a gas stream containing a relatively small amount (about 1% by volume) of carbon monoxide. The carbon monoxide is converted to carbonyl sulfide which is then burned in power plant burner so as to form sulfur dioxide in the power plant exhaust stream.
摘要:
Sulfur and sulfur compounds are removed from a gas stream, such as a hydrocarbon fuel gas stream so as to render the gas stream suitable for use in a fuel cell power plant. Natural gas and recycled hydrogen enters the hydrodesulfurizer assembly at a temperature of about 120.degree. F. The gas stream is heated to a temperature of about 625.degree. F. whereupon it enters a desulfurizing bed formed from a mixture of platinum catalyst deposited on alumina pellets, and a pelletized zinc oxide hydrogen sulfide absorbent. The gas is cooled to an exit temperature of about 525.degree.F. as it passes through the desulfurizer bed. The desulfurizer bed is combined with a shift converter which reduces carbon monoxide in the desulfurized gas stream after the latter has passed through a steam reformer bed.
摘要:
An oxidizer (12) receives cool fresh fuel (10) and hot recycle fuel (14). The recycle fuel is mixed with only a portion of the fresh fuel in the catalytic bed (16). The remaining fresh fuel is progressively added within the bed. High temperature is achieved for local ignition. The exothermic reaction heats the later mixed fuel to the ignition temperature.
摘要:
The invention is a reformate fuel treatment system for a fuel cell power plant that includes at least one fuel cell for generating electricity from process oxidant and reducing fluid reactant streams; fuel processing components including a steam supply and a reformer for producing a hydrogen enriched reformate fuel for the fuel cell from a hydrocarbon fuel; and, an ammonia removal apparatus that treats the reformate fuel to make it appropriate for supplying hydrogen to an anode electrode of the fuel cell. The ammonia removal apparatus may be a disposable ammonia scrubber, an ammonia scrubbing cool water bed and an ammonia stripping warm water bed, a pair of first and second regenerable scrubbers, or a single regenerable ammonia scrubber.
摘要:
A fuel processing system is operable to remove substantially all of the sulfur present in an undiluted hydrocarbon fuel stock supply used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, naphtha, light hydrocarbon fuels such as butane, propane, natural gas, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a nickel desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds react with the nickel reactant, and are converted to nickel sulfide while the desulfurized organic remnants continue through the remainder of the fuel processing system. The system does not require the addition of steam or a hydrogen source to the fuel stream prior to the desulfurizing step. The system operates at relatively low temperatures and can be used to desulfurize either a liquid or a gaseous fuel stream.
摘要:
A fuel processing system is operable to remove substantially all of the sulfur present in an undiluted hydrocarbon fuel stock supply used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, naphtha, light hydrocarbon fuels such as butane, propane, natural gas, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a nickel desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds react with the nickel reactant, and are converted to nickel sulfide while the desulfurized organic remnants continue through the remainder of the fuel processing system. The system does not require the addition of steam or a hydrogen source to the fuel stream prior to the desulfurizing step. The system operates at relatively low temperatures and can be used to desulfurize either a liquid or a gaseous fuel stream.
摘要:
A fuel gas reformer assembly for use in a fuel cell power plant includes fuel gas passages, some of which contain a particulate alumina packing in which a vaporized steam-hydrocarbon fuel stream mixture is heated. The walls of the fuel gas passages are provided with an alumina coating which protects the walls of the passages from corrosion. The alumina coating of the walls, and alumina packing are both overlain by an alkaline earth metal oxide layer, such as a calcium oxide layer, that acts to limit carbon build-up on the surfaces of the coated passage walls. Limiting of carbon build-up in the reformer passages prevents premature clogging of the passages. The carbon build-up-limiting layer is formed on components of the reformer passages by applying a water-based slurry of alkaline earth metal compounds to the reformer passage surfaces, and then drying the slurry so as to solidify it. The formation of the desired crystalline phase of the coating occurs in situ on the coated passage surfaces during initial operation of the reformer. The coated packing material is operative to convert any free carbon remaining in the gas stream to carbon dioxide, or carbon monoxide, thereby further limiting carbon deposition in the assembly.
摘要:
A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.
摘要:
Compact reaction apparatus, such as for steam reforming a hydrocarbon feedstock to produce hydrogen, includes a plurality of reactor tubes disposed within a furnace. A portion of each reactor extends into the burner cavity or combustion volume of the furnace. Baffles, such as sleeves, are disposed around these portions of the reactor tubes to shield the tubes from excessive radiant heat from the wall of the burner cavity and to more evenly distribute heat among and around all of the reactors. These baffles permit the reactor tubes to be closely packed within the furnace and reduce temperature differences between the tubes.
摘要:
A fuel cell power plant, generally, has a fuel cell stack for electrochemically converting a hydrocarbon fuel into electricity. In order for the hydrocarbon fuel to be used by the fuel cell stack, it must be steam reformed into a hydrogen-rich process gas. This process gas has a carbon monoxide level that would be detrimental to the fuel cell stack, so the process gas is passed through a shift converter to decrease the carbon monoxide level therein prior to feeding the process gas to the fuel cell stack. In order to decrease the level of carbon monoxide without the need to increase the size of the shift converter catalyst bed, or lower the temperature of the process gas as it enters the shift converter to an undesirably low temperature, the shift converter design that utilizes an upstream adiabatic zone and a downstream actively cooled zone. The actively cooled zone is cooled by a pressurized water coolant which boils as it cools the process gas stream. The coolant entering the shift converter is essentially a single phase water stream, and the coolant exiting the shift converter is a two phase water-steam mixture.