摘要:
The invention is a reformate fuel treatment system for a fuel cell power plant that includes at least one fuel cell for generating electricity from process oxidant and reducing fluid reactant streams; fuel processing components including a steam supply and a reformer for producing a hydrogen enriched reformate fuel for the fuel cell from a hydrocarbon fuel; and, an ammonia removal apparatus that treats the reformate fuel to make it appropriate for supplying hydrogen to an anode electrode of the fuel cell. The ammonia removal apparatus may be a disposable ammonia scrubber, an ammonia scrubbing cool water bed and an ammonia stripping warm water bed, a pair of first and second regenerable scrubbers, or a single regenerable ammonia scrubber.
摘要:
A fuel gas reformer assembly for use in a fuel cell power plant includes fuel gas passages, some of which contain a particulate alumina packing in which a vaporized steam-hydrocarbon fuel stream mixture is heated. The walls of the fuel gas passages are provided with an alumina coating which protects the walls of the passages from corrosion. The alumina coating of the walls, and alumina packing are both overlain by an alkaline earth metal oxide layer, such as a calcium oxide layer, that acts to limit carbon build-up on the surfaces of the coated passage walls. Limiting of carbon build-up in the reformer passages prevents premature clogging of the passages. The carbon build-up-limiting layer is formed on components of the reformer passages by applying a water-based slurry of alkaline earth metal compounds to the reformer passage surfaces, and then drying the slurry so as to solidify it. The formation of the desired crystalline phase of the coating occurs in situ on the coated passage surfaces during initial operation of the reformer. The coated packing material is operative to convert any free carbon remaining in the gas stream to carbon dioxide, or carbon monoxide, thereby further limiting carbon deposition in the assembly.
摘要:
A fuel gas reformer assemblage for use in a fuel cell power plant is formed from a composite plate assembly which includes spaced-apart divider plates with columns of individual gas passages. The reformer assemblage is constructed from a series of repeating sub-assemblies, each of which includes a core of separate regenerator/heat exchanger gas passages. The core in each sub-assembly is sandwiched between a pair of reformer gas passage skins, which complete the assembly. Adjacent reformer gas/regenerator/reformer gas passage sub-assemblies in the composite plate assembly are separated from each other by burner gas passages. The regenerator/heat exchanger gas passages and the reformer gas passages in each sub-assembly are connected by gas flow reversing manifolds which form a part of each sub-assembly. The fuel gases flow in one end of the assemblage, through the reformer gas passages, and then reverse their direction of flow in the return manifolds so as to exit the reformer assemblage through the regenerator gas flow passages. The burner gases flow in one end of the reformer assemblage and out the other end. The walls of the burner and reformer gas flow passages are selectively catalyzed after the assemblage has been constructed.
摘要:
A fuel processing system is operable to remove substantially all of the sulfur present in an undiluted hydrocarbon fuel stock supply used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, naphtha, light hydrocarbon fuels such as butane, propane, natural gas, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a nickel desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds react with the nickel reactant, and are converted to nickel sulfide while the desulfurized organic remnants continue through the remainder of the fuel processing system. The system does not require the addition of steam or a hydrogen source to the fuel stream prior to the desulfurizing step. The system operates at relatively low temperatures and can be used to desulfurize either a liquid or a gaseous fuel stream.
摘要:
A fuel processing system is operable to remove substantially all of the sulfur present in an undiluted hydrocarbon fuel stock supply used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like, or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, naphtha, light hydrocarbon fuels such as butane, propane, natural gas, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The undiluted hydrocarbon fuel supply is passed through a nickel desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds react with the nickel reactant, and are converted to nickel sulfide while the desulfurized organic remnants continue through the remainder of the fuel processing system. The system does not require the addition of steam or a hydrogen source to the fuel stream prior to the desulfurizing step. The system operates at relatively low temperatures and can be used to desulfurize either a liquid or a gaseous fuel stream.
摘要:
An oxidizer (12) receives cool fresh fuel (10) and hot recycle fuel (14). The recycle fuel is mixed with only a portion of the fresh fuel in the catalytic bed (16). The remaining fresh fuel is progressively added within the bed. High temperature is achieved for local ignition. The exothermic reaction heats the later mixed fuel to the ignition temperature.
摘要:
A fuel processing system is operative to remove substantially all of the sulfur present in a logistic fuel stock supply. The fuel stock can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The system is a part of a fuel cell power plant. The fuel stock supply is fed through a reformer where the fuel is converted to a hydrogen rich fuel which contains hydrogen sulfide. The hydrogen sulfide-containg reformer exhaust is passed through a sulfur scrubber, to which is added a small quantity of air, which scrubber removes substantially all of the sulfur in the exhaust stream by means of the Claus reaction. The desulfurizing step causes sulfur to deposit on the scrubber bed, which after a period of time, will prevent further sulfur from being removed from the reformer exhaust stream. The sulfur scrubber station is rejuvenated by passing a gas stream containing a relatively small amount (about 1% by volume) of carbon monoxide. The carbon monoxide is converted to carbonyl sulfide which is then burned in power plant burner so as to form sulfur dioxide in the power plant exhaust stream.
摘要:
Sulfur and sulfur compounds are removed from a gas stream, such as a hydrocarbon fuel gas stream so as to render the gas stream suitable for use in a fuel cell power plant. Natural gas and recycled hydrogen enters the hydrodesulfurizer assembly at a temperature of about 120.degree. F. The gas stream is heated to a temperature of about 625.degree. F. whereupon it enters a desulfurizing bed formed from a mixture of platinum catalyst deposited on alumina pellets, and a pelletized zinc oxide hydrogen sulfide absorbent. The gas is cooled to an exit temperature of about 525.degree.F. as it passes through the desulfurizer bed. The desulfurizer bed is combined with a shift converter which reduces carbon monoxide in the desulfurized gas stream after the latter has passed through a steam reformer bed.
摘要:
A fuel gas-steam reformer assembly, preferably an autothermal reformer assembly, for use in a fuel cell power plant, includes a mixing station for intermixing a relatively high molecular weight fuel and an air-steam stream so as to form a homogeneous fuel-air-steam mixture for admission into a catalyst bed. The catalyst bed includes catalyzed alumina pellets, or a monolith such as a foam or honeycomb body which is preferably formed from a high temperature material such as a steel alloy, or from a ceramic material. The catalyst bed is contained in a shell which is preferably formed from stainless steel or some other high temperature alloy. The shell includes an internal peripheral thermal insulation layer of zirconia (ZrO2), either in a felt form, or in a rigidified foam. The zirconia insulation layer provides thermal insulation for the shell and retains heat in the catalyst bed and protects the shell against thermal degradation from the hot catalyst bed; and it also protects the catalyst bed against carbon deposition from the fuel and oxygen mixture flowing through the catalyst bed. The use of an internal zirconia insulation layer obviates the need to provide an alumina washcoat and metal oxide coatings on the inner surface of the shell for inhibiting carbon deposition in the catalyst bed. The zirconia insulation layer is non-acidic and possesses carbon gasification properties which are similar to the carbon gasification properties possessed by calcium and alkali metal oxides. Unlike silica insulation, zirconia insulation does not vaporize in the presence of high temperature steam.
摘要:
A fuel processing method is operable to remove substantially all of the sulfur present in an undiluted hydrocarbon fuel stock supply which is used to power a fuel cell power plant in a mobile environment, such as an automobile, bus, truck, boat, or the like; or in a stationary environment. The power plant hydrogen fuel source can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, thiophenes and the like. The undiluted hydrocarbon fuel supply is passed through a nickel reactant desulfurizer bed wherein essentially all of the sulfur in the organic sulfur compounds reacts with the nickel reactant, and is converted to nickel sulfide, while the now desulfurized hydrocarbon fuel supply continues through the remainder of the fuel processing system. The method involves adding hydrogen to the fuel stream prior to the desulfurizing step. The method can be used to desulfurize either a liquid or a gaseous fuel stream. The addition of hydrogen serves to extend the useful life of the nickel reactant. The hydrogen can be derived from source of pure hydrogen gas, a recycle gas stream, or can be derived from an electrolysis cell which breaks down water produced in the fuel cell into its hydrogen and oxygen components. The hydrogen when added to the fuel stock serves to prevent or minimize carbon formation on the nickel reactant bed, thereby extending the useful life of the reactant bed, since carbon deposits tend to block active sites in the reactant bed.