Abstract:
The present invention involves a catalytic process for purifying a gas stream comprising purifying the gas stream at a temperature from about 250° to 550° C. by removing sulfur compounds and including a gas shift reaction to convert carbon monoxide to carbon dioxide to produce a partially purified gas stream. The warm gas stream purification involves COS hydrolysis and hydrogenation to H2S, the removal of H2S, and a CO gas shift to convert CO to CO2 to produce a partially purified stream. Then the carbon dioxide and other impurities are removed from the partially purified gas stream.
Abstract:
The invention relates to a method and apparatus for producing liquid hydro carbonaceous product (1) such as biofuel from solid biomass (2). The method comprises a gasifying step for gasifying solid biomass (2) in a gasifier (6) to produce raw synthesis gas (3), conditioning of the raw synthesis gas (3) to purify the raw synthesis gas (3) to obtain purified synthesis gas (4) having a molar ratio of hydrogen to carbon monoxide between 2.5 to 1 and 0.5 to 1, preferably to between 2.1 to 1 and 1.8 to 1, more preferably about 2 to 1, and subjecting purified synthesis gas (4) to a Fischer-Tropsch synthesis in a Fischer-Tropsch reactor (5) to produce liquid hydro carbonaceous product (1).
Abstract:
A combined process for the recovery of sulfur from an acid gas stream. The combined process includes both a Claus unit and a unit for treating the Claus tail gas with caustic to remove hydrogen sulfide therefrom and to biologically oxidize the hydrogen sulfide using certain types of sulfur bacteria to make elemental sulfur. The combined process provides for an exceptionally low concentration of hydrogen sulfide in the finally treated sweet gas.
Abstract:
The present invention provides a method of treating a raw syngas stream and an apparatus therefor. In the method a raw syngas stream is passed to a hydrolysis unit to provide a hydrolysed syngas stream and a condensed water stream. The hydrolysed syngas stream is passed to an acid gas removal unit to separate H2S and a part of the CO2 from the hydrolysed syngas stream to provide a treated syngas stream and an acid off-gas stream. The acid off-gas stream and a sulphur dioxide-comprising stream are passed to a catalytic zone to react H2S in the acid off-gas stream with SO2 in the sulphur dioxide-comprising stream to provide an elemental sulphur stream and a catalytic zone off-gas stream.
Abstract:
The present invention provides a method of treating a raw syngas stream and an apparatus therefor. In the method a raw syngas stream is passed to a hydrolysis unit to provide a hydrolysed syngas stream and a condensed water stream. The hydrolysed syngas stream is passed to an acid gas removal unit to separate H2S and a part of the CO2 from the hydrolysed syngas stream to provide a treated syngas stream and an acid off-gas stream. The acid off-gas stream and a sulphur dioxide-comprising stream are passed to a catalytic zone to react H2S in the acid off-gas stream with SO2 in the sulphur dioxide-comprising stream to provide an elemental sulphur stream and a catalytic zone off-gas stream.
Abstract:
There is provided a composite catalytic converter for removing pollutant materials from an exhaust gas stream. The converter is composed of an electrically heatable catalytic converter and a conventional ceramic catalytic converter in juxtaposed or embedded axial relationship whereby axial movement in a downstream direction of the electrically heatable catalytic converter core is resisted.
Abstract:
A method for regenerating carbon dioxide and hydrogen sulfide from acid gas using a catalyst containing a group 2 element is provided. The method reduces the energy required for the regeneration process and allows for an efficient and cost-effective way to regenerate acid gas.
Abstract:
In a device for separating methane from a gas mixture containing methane, carbon dioxide and hydrogen sulfide, comprising a gas compressor, two or three membrane separation stages downstream of the compressor and a hydrogen sulfide adsorber, comprising a bed of activated carbon having catalytic activity for oxidizing hydrogen sulfide with oxygen, arranged upstream of the membrane separation stages, oxygen content and relative humidity can be adjusted for optimum adsorption capacity of the hydrogen sulfide adsorber by recycling permeate from the second membrane separation stage, which receives the retentate of the first membrane separation stage, to a point upstream of the hydrogen sulfide adsorber.
Abstract:
The invention relates to a method for recovering sulphur from a sour gas containing hydrogen sulphide and carbon dioxide, comprising: oxidation of the sour gas, wherein a part of the hydrogen sulphide is oxidized to sulphur dioxide and water, reaction of the resulting sulphur dioxide with the residual hydrogen sulphide to elementary sulphur, and removal of elementary sulphur. According to the invention carbon dioxide and/or carbon dioxide generated by oxidation of the sour gas is compressed, and at least a part of the carbon dioxide is injected into an oil well. Furthermore, the invention relates to a plant suitable for performing the above method.
Abstract:
The present invention involves a catalytic process for purifying a gas stream comprising purifying the gas stream at a temperature from about 250° to 550° C. by removing sulfur compounds and including a gas shift reaction to convert carbon monoxide to carbon dioxide to produce a partially purified gas stream. The warm gas stream purification involves COS hydrolysis and hydrogenation to H2S, the removal of H2S, and a CO gas shift to convert CO to CO2 to produce a partially purified stream. Then the carbon dioxide and other impurities are removed from the partially purified gas stream.