摘要:
A crystalline semiconductor Schottky barrier-like diode sandwiched between two conducting electrodes is in series with a memory element, a word line and a bit line, wherein the setup provides voltage margins greater than 1V and current densities greater than 5×106 A/cm2. This Schottky barrier-like diode can be fabricated under conditions compatible with low-temperature BEOL semiconductor processing, can supply high currents at low voltages, exhibits high on-off ratios, and enables large memory arrays.
摘要翻译:夹在两个导电电极之间的晶体半导体肖特基势垒状二极管与存储元件,字线和位线串联,其中,该设置提供大于1V的电压裕度和大于5×106A / cm 2的电流密度。 这种肖特基势垒状二极管可以在与低温BEOL半导体处理兼容的条件下制造,可以在低电压下提供高电流,具有高开关比,并且可以实现大型存储器阵列。
摘要:
A device is disclosed having a M8XY6 layer sandwiched in between a first conductive layer on the top and a second conductive layer on the bottom, wherein (i) M includes at least one element selected from the group consisting of Cu, Ag, Li, and Zn, (ii) X includes at least one Group XIV element, and (iii) Y includes at least one Group XVI element. Also disclosed is a device comprising: an MaXbYc material contacted on opposite sides by respective layers of conductive material, wherein: (i) M includes at least one element selected from the group consisting of Cu, Ag, Li, and Zn, (ii) X includes at least one Group XIV element, and (iii) Y includes at least one Group XVI element, and wherein a is in the range of 48-60 atomic percent, b is in the range of 4-10 atomic percent, c is in the range of 30-45 atomic percent, and a+b+c is at least 90 atomic percent.
摘要翻译:公开了一种器件,其具有夹在顶部的第一导电层和底部的第二导电层之间的M8XY6层,其中(i)M包括选自由Cu,Ag,Li和 Zn,(ii)X包括至少一种XIV族,和(iii)Y包括至少一个XVI族。 还公开了一种装置,包括:MaXbYc材料,在相对侧通过相应的导电材料层接触,其中:(i)M包括选自由Cu,Ag,Li和Zn组成的组中的至少一种元素,(ii) X包括至少一个第XIV族元素,和(iii)Y包括至少一个第ⅩⅥ族元素,并且其中a在48-60原子百分比的范围内,b在4-10原子百分比的范围内,c是 在30-45原子%的范围内,a + b + c为至少90原子%。
摘要:
A method of electrodepositing germanium compound materials on an exposed region of a substrate structure, which includes forming a plating solution by dissolving at least one germanium salt and at least one salt containing an element other than germanium in water; obtaining a substrate with a clean surface; immersing the substrate in the solution; and electroplating germanium compound materials on the substrate by applying an electrical potential between the substrate and an anode in the plating solution, in which the substrate is included in a semiconductor or phase change device.
摘要:
A composite material comprising a layer containing copper, and an electrodeposited CoWP film on the copper layer. The CoWP film contains from 11 atom percent to 25 atom percent phosphorus and has a thickness from 5 nm to 200 nm. The invention is also directed to a method of making an interconnect structure comprising: providing a trench or via within a dielectric material, and a conducting metal containing copper within the trench or the via; and forming a CoWP film by electrodeposition on the copper layer. The CoWP film contains from 10 atom percent to 25 atom percent phosphorus and has a thickness from 5 nm to 200 nm. The invention is also directed to a interconnect structure comprising a dielectric layer in contact with a metal layer; an electrodeposited CoWP film on the metal layer, and a copper layer on the CoWP film.
摘要:
At least one modified strain region having a damage depth between 0.1 and 2 microns in a disk drive slider is created by implantation with ions, electrons or neutral atoms. The modified strain region induces a deformation of the disk drive slider. The nature and extent of this deformation is determined by the interaction between the slider and the modified strain region.
摘要:
A method for forming a silicide contact includes depositing a metal layer on silicon such that the metal layer intermixes with the silicon to form an intermixed region on the silicon; removing an unintermixed portion of the metal layer from the intermixed region; and annealing the intermixed region to form a silicide contact on the silicon. A semiconductor device comprising a silicide contact located over a silicon layer of the semiconductor device, the silicide contact comprising nickel (Ni) and silicon (Si) and having Ni amount equivalent to a thickness of about 21 angstroms or less.
摘要:
A method of electrodepositing germanium compound materials on an exposed region of a substrate structure, which includes forming a plating solution by dissolving at least one germanium salt and at least one salt containing an element other than germanium in water; obtaining a substrate with a clean surface; immersing the substrate in the solution; and electroplating germanium compound materials on the substrate by applying an electrical potential between the substrate and an anode in the plating solution, in which the substrate is included in a semiconductor or phase change device.
摘要:
A method for forming a silicide contact includes depositing a metal layer on silicon such that the metal layer intermixes with the silicon to form an intermixed region on the silicon; removing an unintermixed portion of the metal layer from the intermixed region; and annealing the intermixed region to form a silicide contact on the silicon. A semiconductor device comprising a silicide contact located over a silicon layer of the semiconductor device, the silicide contact comprising nickel (Ni) and silicon (Si) and having Ni amount equivalent to a thickness of about 21 angstroms or less.
摘要:
A method of depositing a SiNxCy liner on a porous low thermal conductivity (low-k) substrate by plasma-enhanced atomic layer deposition (PE-ALD), which includes forming a SiNxCy liner on a surface of a low-k substrate having pores on a surface thereon, in which the low-k substrate is repeatedly exposed to a aminosilane-based precursor and a plasma selected from nitrogen, hydrogen, oxygen, helium, and combinations thereof until a thickness of the liner is obtained, and wherein the liner is prevented from penetrating inside the pores of a surface of the substrate. A porous low thermal conductivity substrate having a SiNxCy liner formed thereon by the method is also disclosed.
摘要:
A method of depositing a SiNxCy liner on a porous low thermal conductivity (low-k) substrate by plasma-enhanced atomic layer deposition (PE-ALD), which includes forming a SiNxCy liner on a surface of a low-k substrate having pores on a surface thereon, in which the low-k substrate is repeatedly exposed to a aminosilane-based precursor and a plasma selected from nitrogen, hydrogen, oxygen, helium, and combinations thereof until a thickness of the liner is obtained, and wherein the liner is prevented from penetrating inside the pores of a surface of the substrate. A porous low thermal conductivity substrate having a SiNxCy liner formed thereon by the method is also disclosed.