摘要:
The invention provides a novel laser-plasma-based source of relativistic electrons; and a method to use laser-driven plasma waves as the basis for the source of electrons. The technique involves a combination of laser beams, which are focused in a plasma. One beam creates a wakefield plasma wave. In one embodiment, the one beam creates a wakefield plasma wave and the other beam alters the trajectory of background electrons, such that they become trapped in the plasma wave and are then accelerated to relativistic velocities, preferably in a distance less than a millimeter. In another embodiment, the second beam removes electrons from atomic ions previously generated by the first beam thereby providing electrons which become trapped in the plasma wave and then accelerated to relativistic velocities.
摘要:
A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.
摘要:
A method and apparatus for generating high-energy beams of electrons or x-rays through laser wakefield acceleration to remotely examine containers is disclosed. By scanning the beam of electrons or x-rays across a container, an inspector can remotely determine whether the containers contain items of interest, such as special nuclear materials, without having to manually inspect the contents of the container. The invention can be compact enough to be portable, which provides for the flexibility to examine a variety of different containers under a variety of different conditions.
摘要:
The invention provides a method and apparatus for generating large amplitude nonlinear plasma waves, driven by an optimized train of independently adjustable, intense laser pulses. In the method, optimal pulse widths, interpulse spacing, and intensity profiles of each pulse are determined for each pulse in a series of pulses. A resonant region of the plasma wave phase space is found where the plasma wave is driven most efficiently by the laser pulses. The accelerator system of the invention comprises several parts: the laser system, with its pulse-shaping subsystem; the electron gun system, also called beam source, which preferably comprises photo cathode electron source and RF-LINAC accelerator; electron photo-cathode triggering system; the electron diagnostics; and the feedback system between the electron diagnostics and the laser system. The system also includes plasma source including vacuum chamber, magnetic lens, and magnetic field means. The laser system produces a train of pulses that has been optimized to maximize the axial electric field amplitude of the plasma wave, and thus the electron acceleration, using the method of the invention.
摘要:
The present invention provides a system and an apparatus to produce x-rays from plasmas by focusing an intense, short duration optical pulse from a laser onto a target. The concentrated energy contained in the focused laser beam ionizes the target material, raising it to a temperature at which ions are produced in a chain reaction ionization, and x-rays are emitted when ions become de-excited (their electrons change energy level) or free electrons recombine with the ions in the plasma. The method comprises controlling pulse time duration of x-rays emitted from a plasma-forming target by generating a beam of one or more laser pulses; adjusting the intensity of the laser pulse to obtain a desired intensity incident at a surface of the plasma-forming target matter; directing the laser pulse onto the surface of the plasma-forming matter to generate the x-rays having a pulse duration which changes in proportion to a change in the incident laser pulse intensity. In one embodiment, the x-rays are then directed onto a sample target.
摘要:
A system and methods for transporting light and then intensifying the light are provided. The system and methods can be utilized for a number of applications, including the detection and treatment of cancer and restenosis. Laser light is transported through a catheter (composed of capillaries) which can be fed into a patient allowing the end of the catheter to be placed in close proximity to a tumor. The laser light at the end of the catheter assembly can be reduced in pulse duration and focused to high intensity onto a target and thereby generate in vivo pulses of ionizing radiation.
摘要:
A system is provided for generating high-energy particles and for inducing nuclear reactions. The system includes a laser and for emitting a laser beam, an irradiation target for receiving the laser beam and producing high-energy particles, and a secondary target for receiving the high-energy particles, thereby inducing a nuclear reaction. A method is also provided including producing a laser beam of high-intensity with an ultra-short pulse duration, irradiating the laser beam onto an irradiation target in order to ionize the irradiation target and produce a collimated beam of high-energy particles, and colliding the collimated beam of high-energy particles onto a secondary target containing a nuclei, thereby inducing a nuclear reaction on the secondary target.
摘要:
A method and apparatus for generating high-energy beams of electrons or x-rays through laser wakefield acceleration to remotely examine containers is disclosed. By scanning the beam of electrons or x-rays across a container, an inspector can remotely determine whether the containers contain items of interest, such as special nuclear materials, without having to manually inspect the contents of the container. The invention can be compact enough to be portable, which provides for the flexibility to examine a variety of different containers under a variety of different conditions.
摘要:
A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.