摘要:
Disclosed is a micromechanical system fabrication method using (111) single crystalline silicon as a silicon substrate and employing a reactive ion etching process in order to pattern a microstructure that will be separated from the silicon substrate and a selective release-etching process utilizing an aqueous alkaline solution in order to separate the microstructure from the silicon substrate. According to the micromechanical system fabrication method of the present invention, the side surfaces of microstructures can be formed to be vertical by employing the RIE technique. Furthermore, the microstructures can be readily separated from the silicon substrate by employing the selective release-etching technique using slow etching {111} planes as the etch stop in an aqueous alkaline solution. In addition, etched depths can be adjusted during the RIE step, thereby adjusting the thickness of the microstructure and the spacing between the microstructure and the silicon substrate.
摘要:
An electrical isolation method for silicon microelectromechanical systems provides trenches filled with insulation layers that support released silicon structures. The insulation layer that fills the trenches passes through the middle portion of the electrodes, anchors the electrodes to the silicon substrate and supports the electrode. The insulation layers do not attach the electrode to the sidewalls of the substrate, thereby forming an electrode having an “island” shape. Such an electrode is spaced far apart from the adjacent walls of the silicon substrate providing a small parasitic capacitance for the resulting structure. The isolation method is consistent with fabricating a complex structure or a structure with a complicated electrode arrangement. Furthermore, the structure and the electrode are separated from the silicon substrate in a single release step. Additionally, a metal layer is deposited on the surfaces of the structure and electrodes without using separate photolithography and etching steps.
摘要:
Disclosed is a micromechanical system fabrication method using (111) single crystalline silicon as a silicon substrate and employing a reactive ion etching process in order to pattern a microstructure that will be separated from the silicon substrate and a selective release-etching process utilizing an aqueous alkaline solution in order to separate the microstructure from the silicon substrate. According to the micromechanical system fabrication method of the present invention, the side surfaces of microstructures can be formed to be vertical by employing the RIE technique. Furthermore, the microstructures can be readily separated from the silicon substrate by employing the selective release-etching technique using slow etching {111} planes as the etch stop in an aqueous alkaline solution. In addition, etched depths can be adjusted during the RIE step, thereby adjusting the thickness of the microstructure and the spacing between the microstructure and the silicon substrate.
摘要:
An isolation method for a single crystalline silicon microstructure using a triple layer structure is disclosed. The method includes forming the triple layer composed of an insulation layer formed over an exposed surface of the silicon microstructure, a conductive layer formed over the entire insulation layer, and a metal layer formed over a top portion of the microstructure; and partially etching the conductive layer to form electrical isolation between parts of the microstructure. The method does not require a separate photolithography process for isolation, and can be effectively applied to microstructures having high aspect ratios and narrow trenches. Also disclosed are single crystalline silicon microstructures having a triple layer isolation structure formed using the disclosed method.
摘要:
Disclosed are a probe structure for testing semiconductor devices and a method for fabricating the probe structure. The fabricated probe structure of the present invention satisfies the high density, the uniformity of size, height and spacing, and the integration of elements. The probe structure of the present invention solves the conventional problems such as long fabrication time of the probe structure, difficulty in finely controlling the structure of the probe structure, complexity of the whole process, mechanical instability of the products, and difficulty in uniformly assembling a plurality of the probe structures. Additionally, the probe structure of the present invention solves several problems caused in an actual testing step of the semiconductor devices, for instance, long testing time of the semiconductor device, difficulty in providing the sufficient contact force between the probe structure and the semiconductor device, and having to specially design the test pads of the semiconductor device.
摘要:
Disclosed is a multiple sensor system including a plurality of different sensor devices to acquire respective signals sensed from a single signal source, and a signal acquisition apparatus to recover an original signal generated from the signal source. The signal acquisition apparatus recovers the original signal by applying joint recovery, based on characteristics and correlations between the respective sensor devices, to compressive sensing signals independently compressively sensed and transmitted from the respective sensor devices. At this time, a sensing matrix F prearranged with the respective sensor devices and channel information C between the original signal and each sensor device are used for joint recovery.
摘要:
A decorating material with cubic (3D) effect and a method for manufacturing the same are disclosed, wherein the material includes a resin layer formed on a substrate to have a convexo-concave pattern, a metallic film and a light opaque film sequentially formed on a convex portion or on a concave portion, wherein the convex portion or the concave portion is formed with a light penetration unit through which light is penetrated.
摘要:
A decorating material with cubic (3D) effect and a method for manufacturing the same are disclosed, wherein the material includes a resin layer formed on a substrate to have a convexo-concave pattern, a metallic film and a light opaque film sequentially formed on a convex portion or on a concave portion, wherein the convex portion or the concave portion is formed with a light penetration unit through which light is penetrated.