Abstract:
A mechanically stable main body having a cutout, into which an ESD protection element is at least partly embedded and mechanically fixed by means of a connection means. Electrical terminals of the protection element are connected to terminal pads on the top side of the main body by way of a structured metallic layer bearing on main body and protection element.
Abstract:
A light-emitting diode device has a first carrier and at least one light-emitting diode chip, which is arranged on the first carrier. The first carrier has at least one first and one second carrier part, wherein the light-emitting diode chip rests only on the first carrier part. Furthermore, the first and second carrier parts each have a thermal conductivity. The thermal conductivity of the first carrier part is at least 1.5 times the thermal conductivity of the second carrier part. The first carrier part is surrounded laterally by the second carrier part.
Abstract:
A mechanically stable main body having a cutout, into which an ESD protection element is at least partly embedded and mechanically fixed by means of a connection means. Electrical terminals of the protection element are connected to terminal pads on the top side of the main body by way of a structured metallic layer bearing on main body and protection element.
Abstract:
A chip and a method for manufacturing a chip are disclosed. In an embodiment, the chip includes a varistor layer composed of zinc oxide, a multilayered electrode structure which realizes a varistor function in the varistor layer and at least two solderable or bondable external contacts on a first main surface of the varistor layer. The chip further includes a glass layer disposed on the first main surface leaving only the external contacts uncovered, wherein the glass layer includes, as main constituents, oxides of Si and/or Ge, B and K, which in total have at least 70% by weight of the constituents of the glass layer, and wherein the glass layer is substantially free of Al, Ga, Cr and Ti.
Abstract:
A light-emitting diode device has a first carrier and at least one light-emitting diode chip, which is arranged on the first carrier. The first carrier has at least one first and one second carrier part, wherein the light-emitting diode chip rests only on the first carrier part. Furthermore, the first and second carrier parts each have a thermal conductivity. The thermal conductivity of the first carrier part is at least 1.5 times the thermal conductivity of the second carrier part. The first carrier part is surrounded laterally by the second carrier part.
Abstract:
A green film composed of varistor material is laminated on a ceramic main body (GK), which is provided with metallizations (EP1, AF) on both sides, and is sintered to form a varistor layer (VS). A terminating electrode pair (EP1, EP2) completes the arrangement and allows the varistor layer to be operated as a varistor. The upper second electrode pair (EP2) can serve directly as a terminal contact for mounting an electrical component.
Abstract:
A chip and a method for manufacturing a chip are disclosed. In an embodiment, the chip includes a varistor layer composed of zinc oxide, a multilayered electrode structure which realizes a varistor function in the varistor layer and at least two solderable or bondable external contacts on a first main surface of the varistor layer. The chip further includes a glass layer disposed on the first main surface leaving only the external contacts uncovered, wherein the glass layer includes, as main constituents, oxides of Si and/or Ge, B and K, which in total have at least 70% by weight of the constituents of the glass layer, and wherein the glass layer is substantially free of Al, Ga, Cr and Ti.
Abstract:
A light-emitting diode arrangement includes a light-emitting diode and a coding resistor for coding the light-emitting diode. The coding resistor is embodied as a star connection of a number of resistors. Furthermore, a module includes a plurality of light-emitting diode arrangements. Furthermore, a method for producing a light-emitting diode arrangement is specified, wherein the coding of a coding resistor is carried out depending on a determined characteristic of the light-emitting diode.
Abstract:
A light-emitting diode arrangement includes a light-emitting diode and a coding resistor for coding the light-emitting diode. The coding resistor is embodied as a star connection of a number of resistors. Furthermore, a module includes a plurality of light-emitting diode arrangements. Furthermore, a method for producing a light-emitting diode arrangement is specified, wherein the coding of a coding resistor is carried out depending on a determined characteristic of the light-emitting diode.