Abstract:
Disclosed are a GaN (gallium nitride) compound power semiconductor device and a manufacturing method thereof. The gallium nitride compound power semiconductor device includes: a gallium nitride compound element formed by being grown on a wafer; a contact pad including a source, a drain, and a gate connecting with the gallium nitride compound element; a module substrate to which the nitride gallium compound element is flip-chip bonded; a bonding pad formed on the module substrate; and a bump formed on the bonding pad of the module substrate so that the contact pad and the bonding pad are flip-chip bonded. By this configuration, it is possible to reduce the process costs by forming the bump on the substrate based on the wafer level, rapidly emit the heat generated from an AlGaN HEMT device by forming the sub source contact pad and the sub drain contact pad of the substrate in the active region, and efficiently emit the heat generated from the AlGaN HEMT device by forming a via hole on the substrate and filling the via hole with the conductive metal.
Abstract:
The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
Abstract:
Disclosed is a manufacturing method of a high electron mobility transistor. The method includes: forming a source electrode and a drain electrode on a substrate; forming a first insulating film having a first opening on an entire surface of the substrate, the first opening exposing a part of the substrate; forming a second insulating film having a second opening within the first opening, the second opening exposing a part of the substrate; forming a third insulating film having a third opening within the second opening, the third opening exposing a part of the substrate; etching a part of the first insulating film, the second insulating film and the third insulating film so as to expose the source electrode and the drain electrode; and forming a T-gate electrode on a support structure including the first insulating film, the second insulating film and the third insulating film.