摘要:
A low-k organic dielectric material having stable nano-sized porous is provided as well as a method of fabricating the same. The porous low-k organic dielectric material is made from a composition of matter having a vitrification temperature (Tv-comp) which includes a b-staged thermosetting resin having a vitrification temperate (Tv-resin), a pore generating material, and a reactive additive. The reactive additive lowers Tv-comp below Tv-resin.
摘要:
A low-k organic dielectric material having stable nano-sized porous is provided as well as a method of fabricating the same. The porous low-k organic dielectric material is made from a composition of matter having a vitrification temperature (Tv-comp) which includes a b-staged thermosetting resin having a vitrification temperate (Tv-resin), a pore generating material, and a reactive additive. The reactive additive lowers Tv-comp below Tv-resin.
摘要:
A slider assembly is provided comprising a plurality of sliders bonded by a debondable solid encapsulant comprised of different first and second polymers The solid encapsulant is comprised of a polymer prepared by polymerizing an encapsulant fluid comprising a homogeneous mixture of first and second constituents. The first constituent is comprised of a first monomer suitable for in situ polymerization to form the first polymer. The second constituent is comprised of the second polymer or a second monomer suitable for in situ polymerization to form the second polymer. The first constituent does not substantially react with the second constituent. Each slider has a surface that is free from the encapsulant. The encapsulant-free surfaces are coplanar to each other. Also provided are methods for forming the assembly and methods for patterning a slider surface using the encapsulant.
摘要:
The invention relates generally to the bonding of one or more sliders in styrene and butadiene polymers. More particularly, the invention relates to planarized slider assemblies formed by using debondable solid encapsulants comprised of styrene and butadiene polymers. The invention also relates to methods that use such encapsulants in conjunction with resists to produce magnetic head sliders having patterned air-bearing surfaces.
摘要:
The invention relates generally to the bonding of one or more sliders in styrene and acrylate polymers. More particularly, the invention relates to planarized slider assemblies formed by using debondable solid encapsulants comprised of styrene and acrylate polymers. The invention also relates to methods that use such encapsulants in conjunction with resists to produce magnetic head sliders having patterned air-bearing surfaces.
摘要:
A process for fabricating sliders where the sliders are held in place during processing by a solid matrix material is described. A thin coating of a release-layer material is applied on the sliders before encapsulation in the matrix material. The release-layer material is polyvinyl alcohol and more preferably high molecular weight polyvinyl alcohol which is highly hydrolyzed. Use of the release-layer of the invention maintains the process resistance while providing the advantage of allowing easier removal of the matrix material after it is no longer needed. The release-layer can be applied to encapsulant materials including epoxies, acrylates, polyimides, silsesquioxanes and others. After the selected fabrication process such as the formation of air-bearing features an appropriate solvent is applied to soften the polyvinyl alcohol film and allow clean debonding of the sliders.
摘要:
An encapsulant fluid is provided comprising a mixture of a diene-containing compound and a dienophilic compound. At least one of the diene-containing and the dienophilic compounds is protected so that the compounds do not substantially react with each other at room temperature. The diene-containing and the dienophilic compounds undergo a reversible Diels-Alder polymerization reaction at a polymerization temperature above room temperature to form a solid debondable polymeric encapsulant. Also provided are methods for forming slider assemblies and methods for patterning a slider surface using the encapsulant.
摘要:
A slider assembly is provided comprising a plurality of sliders bonded by a debondable solid encapsulant. The solid encapsulant is comprised of a polymer prepared by polymerizing a mixture of first and second monomers in a nonstoichiometric ratio effective to render the encapsulant debondable. Each slider has a surface that is free from the encapsulant. The encapsulant-free surfaces are coplanar to each other. Also provided are methods for forming the assembly and methods for patterning a slider surface using the encapsulant.
摘要:
In one exemplary embodiment, a method includes: providing a structure having a first layer overlying a substrate, where the first layer includes a dielectric material having a plurality of pores; applying a filling material to an exposed surface of the first layer; heating the structure to a first temperature to enable the filling material to homogeneously fill the plurality of pores; after filling the plurality of pores, performing at least one process on the structure; and after performing the at least one process, removing the filling material from the plurality of pores by heating the structure to a second temperature to decompose the filling material.
摘要:
In one exemplary embodiment, a method includes: providing a structure having a first layer overlying a substrate, where the first layer includes a dielectric material having a plurality of pores; applying a filling material to a surface of the first layer, where the filling material includes a polymer and at least one additive, where the at least one additive includes at least one of a surfactant, a high molecular weight polymer and a solvent; and after applying the filling material, heating the structure to enable the filling material to at least partially fill the plurality of pores uniformly across an area of the first layer, where heating the structure results in residual filling material being uniformly left on the surface of the first layer.