Abstract:
A probe card assembly comprises multiple probe substrates attached to a mounting assembly. Each probe substrate includes a set of probes, and together, the sets of probes on each probe substrate compose an array of probes for contacting a device to be tested. Adjustment mechanisms are configured to impart forces to each probe substrate to move individually each substrate with respect to the mounting assembly. The adjustment mechanisms may translate each probe substrate in an “x,” “y,” and/or “z” direction and may further rotate each probe substrate about any one or more of the forgoing directions. The adjustment mechanisms may further change a shape of one or more of the probe substrates. The probes can thus be aligned and/or planarized with respect to contacts on the device to be tested.
Abstract:
A gap-closing actuator includes a stator having one or more first electrodes, a mover having one or more second electrodes interposed among the first electrodes, and a biasing mechanism for applying a non-capacitive bias to the mover for urging the mover to move in a desired direction with respect to the stator. The non-capacitive bias is different from a capacitive force generated between the first and second electrodes when the gap-closing actuator is in operation.
Abstract:
Probes of a probe card assembly can be adjusted with respect to an element of the probe card assembly, which can be an element of the probe card assembly that facilitates mounting of the probe card assembly to a test apparatus. The probe card assembly can then be mounted in a test apparatus, and an orientation of the probe card assembly can be adjusted with respect to the test apparatus, such as a structural part of the test apparatus or a structural element attached to the test apparatus.
Abstract:
A stiffening connector assembly and methods of use are provided herein. In some embodiments a stiffening connector assembly includes a connector configured to be coupled to a substrate; and a mechanism coupled to the connector and configured to restrict rotational movement of the connector with respect to the substrate when coupled thereto. The mechanism may further provide a lateral degree of freedom of movement in a direction substantially parallel to the substrate.
Abstract:
An electronic device can comprise a semiconductor die on which can be formed a micromechanical system. The micromechanical system can comprise a plurality of electrically conductive elongate, contact structures, which can be disposed on input and/or output terminals of the semiconductor die. The micromechanical system can also comprise a cooling structure disposed on the semiconductor die.
Abstract:
A gap-closing actuator includes a stator having one or more first electrodes, a mover having one or more second electrodes interposed among the first electrodes, and a biasing mechanism for applying a non-capacitive bias to the mover for urging the mover to move in a desired direction with respect to the stator. The non-capacitive bias is different from a capacitive force generated between the first and second electrodes when the gap-closing actuator is in operation.
Abstract:
A method or an apparatus for aligning a plurality of structures can include applying a first force in a first plane to a first structure. The method can also include constraining in the first plane the first structure with respect to a second structure such that the first structure is in a position with respect to the second structure that aligns first features on the first structure with second features on the second structures. The second feature can be in a second plane that is generally parallel to the first plane. The first and second structures can be first and second electronic components, which can be components of a probe card assembly.
Abstract:
A probe card assembly comprises multiple probe substrates attached to a mounting assembly. Each probe substrate includes a set of probes, and together, the sets of probes on each probe substrate compose an array of probes for contacting a device to be tested. Adjustment mechanisms are configured to impart forces to each probe substrate to move individually each substrate with respect to the mounting assembly. The adjustment mechanisms may translate each probe substrate in an “x,” “y,” and/or “z” direction and may further rotate each probe substrate about any one or more of the forgoing directions. The adjustment mechanisms may further change a shape of one or more of the probe substrates. The probes can thus be aligned and/or planarized with respect to contacts on the device to be tested.
Abstract:
Embodiments of the present invention can relate to probe card assemblies, multilayer support substrates for use therein, and methods of designing multilayer support substrates for use in probe card assemblies. In some embodiments, a probe card assembly may include a multilayer support substrate engineered to substantially match thermal expansion of a reference material over a desired temperature range; and a probe substrate coupled to the multilayer support substrate. In some embodiments, the reference material may be silicon.
Abstract:
Systems and methods for depositing a plurality of droplets in a three-dimensional array are disclosed. The array can comprise a first type of droplets disposed to form a support structure and a second type of droplets forming a conductive seed layer on the support structure. A structure material can be electrodeposited onto the seed layer to create a three-dimensional structure.