摘要:
A method for creating semiconductor devices is provided. A photoresist layer is provided on a wafer. The photoresist layer is patterned. Polymers in the patterned photoresist layer are chemically cross-linked by exposure to at least one reactive chemical. The pattern in the photoresist layer is transferred to the wafer. A reaction chamber for processing a wafer with a patterned layer of photoresist material, wherein the photoresist material was patterned by exposing the photoresist material using light of a wavelength less than 248 nm is provided. A chamber is provided with a central cavity. A wafer support for supporting the wafer in the central cavity is provided. A cross-linking reactive chemical source in fluid contact with the chamber and which provides a reactive chemical which causes cross-linking of the photoresist is provided.
摘要:
A method for creating semiconductor devices by etching a layer over a wafer is provided. A photoresist layer is provided on a wafer. The photoresist layer is patterned. The wafer is placed in a process chamber. The photoresist is hardened by providing a hardening plasma containing high energy electrons in the process chamber to harden the photoresist layer, wherein the high energy electrons have a density. The layer is etched within the process chamber with an etching plasma, where a density of high energy electrons in the etching plasma is less than the density of high energy electrons in the hardening plasma.
摘要:
A feature in a layer is provided. A photoresist layer is formed over the layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls, where the photoresist features have a first critical dimension. A conformal layer is deposited over the sidewalls of the photoresist features to reduce the critical dimensions of the photoresist features. Features are etched into the layer, wherein the layer features have a second critical dimension, which is less than the first critical dimension.
摘要:
A method for forming damascene features in a dielectric layer over a barrier layer over a substrate is provided. A plurality of vias are etched in the dielectric layer to the barrier layer with a plasma etching process in the plasma processing chamber. A patterned photoresist layer is formed with a trench pattern. Within a single plasma process chamber a combination via plug deposition to form plugs in the vias over the barrier layer and trench etch is provided.
摘要:
A method for creating semiconductor devices by etching a layer over a wafer is provided. A photoresist layer is provided on a wafer. The photoresist layer is patterned. The wafer is placed in a process chamber. The photoresist is hardened by providing a hardening plasma containing high energy electrons in the process chamber to harden the photoresist layer, wherein the high energy electrons have a density. The layer is etched within the process chamber with an etching plasma, where a density of high energy electrons in the etching plasma is less than the density of high energy electrons in the hardening plasma.
摘要:
A feature in a layer is provided. A photoresist layer is formed over the layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls, where the photoresist features have a first critical dimension. A conformal layer is deposited over the sidewalls of the photoresist features to reduce the critical dimensions of the photoresist features. Features are etched into the layer, wherein the layer features have a second critical dimension, which is less than the first critical dimension.
摘要:
A feature in a layer is provided. A photoresist layer is formed over the layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls, where the photoresist features have a first critical dimension. A conformal layer is deposited over the sidewalls of the photoresist features to reduce the critical dimensions of the photoresist features. Features are etched into the layer, wherein the layer features have a second critical dimension, which is less than the first critical dimension.
摘要:
A feature in a layer is provided. A photoresist layer is formed over the layer. The photoresist layer is patterned to form photoresist features with photoresist sidewalls, where the photoresist features have a first critical dimension. A conformal layer is deposited over the sidewalls of the photoresist features to reduce the critical dimensions of the photoresist features. Features are etched into the layer, wherein the layer features have a second critical dimension, which is less than the first critical dimension.
摘要:
The present invention discloses a photo-induced DNA-cleaving agent composition comprises N-aryl-N-(alkyl or arylalkyl)hydroxylamine having the following formula: ##STR1## wherein R is C.sub.1 -C.sub.6 alkyl, phenyl, C.sub.1 -C.sub.6 alkoxy, phenoxy, C.sub.1 -C.sub.6 alkoxycarbonyl, halogen or halo(C.sub.1 -C.sub.6 alkyl)wherein R.sub.1 is hydrogen, C.sub.1 -C.sub.6 alkyl, phenyl, C.sub.1 -C.sub.6 alkoxy, C.sub.1 -C.sub.6 alkoxycarbonyl, halogen or halo(C.sub.1 -C.sub.6 alkyl); R.sub.2 is hydrogen; R.sub.3 is hydrogen or phenyl; R.sub.4 is hydrogen, phenyl, hydroxylphenyl, methoxyphenyl, dimethoxyphenyl, dimethylaminophenyl or naphthyl. The present N-aryl-N-(alkyl or arylalkyl)hydroxylamine is stable in dark, but it can react with O.sub.2 to form HO.multidot. radicals under irradiation of UV light for a period of 2-3 hours. The HO.multidot. radicals then react with DNA to accomplish cleavage of DNA.
摘要:
A hydrogen-purifying device is suitable for a fuel cell (FC). The hydrogen-purifying device includes a guiding tank, a first water-absorbing material, a porous filter material and a second water-absorbing material. The guiding tank is connected to a hydrogen-generating device and a fuel cell. The hydrogen-generating device generates hydrogen, moisture mixed with the hydrogen and impurities mixed with the hydrogen. The first water-absorbing material, the porous filter material and the second water-absorbing material are disposed in the guiding tank. The hydrogen passes through the first water-absorbing material to remove a part of the moisture. Then, the hydrogen further passes through the porous filter material to remove the impurity. After that, the hydrogen further passes through the second water-absorbing material to remove another part of the moisture and arrives at the fuel cell.