Abstract:
Methods for the isolation of mutant rhizobial strains with improved competition of nodulation (Comp.sup.+) is presented. Mutants are selected for constitutive expression of inducible nod genes (in the absence of inducer) and screened for hyperinduction of nod genes in the presence of inducer. Mutants which are defective in nodulation or in symbiotic nitrogen fixation are eliminated from further testing. Selections for constitutive nod expression and for hyperinduction of nod genes are facilitated by the use of plasmid carrying a selectable marker fused to an inducible nod gene and a plasmid carrying a reporter gene fused downstream of an inducible nod gene. The methods exemplified are particularly useful for the isolation and identification of Comp.sup.+ mutants of Bradyrhizobium japonicum.
Abstract:
Human chemokine Beta-10 polypeptides and DNA (RNA) encoding such chemokine polypeptides and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such chemokine polypeptides for the treatment of leukemia, tumors, chronic infections, autoimmune disease, fibrotic disorders, wound healing and psoriasis. Antagonists against such chemokine polypeptides and their use as a therapeutic to treat rheumatoid arthritis, autoimmune and chronic inflammatory and infective diseases, allergic reactions, prostaglandin-independent fever and bone marrow failure are also disclosed.
Abstract:
Disclosed are methods for discovering agonists and antagonists of the interaction between a secreted human protein, chemokine CK.beta.-9, and its cellular receptor, human CCR7, which may have utility in the treatment of several human diseases, including, but not limited to: allergic disorders, autoimmune diseases, ischemia/reperfusion injury, development of atherosclerotic plaques, cancer (including mobilization of hematopoietic stem cells for use in chemotherapy or mycloprotection during chemotherapy), chronic inflammatory disorders, chronic rejection of transplanted organs or tissue grafts, chronic myelogenous leukemia, and infection by HIV and other pathogens.
Abstract:
A symbiosis plasmid from a fast-growing Rhizobium japonicum donor strain can be transferred to Rhizobium recipient strains, the recipient strains being previously incapable of forming an effective symbiotic relationship with plants of certain Glycine (e.g. soybean) varieties. The recipient strains harboring the symbiosis plasmid will form effective symbioses with soybean plants of said certain varieties, the transferred symbiosis plasmid conferring the host range or specificity of the donor strain on the recipient strains. Methods, strains, and plasmids useful for practice of this invention are also provided.
Abstract:
Human chemokine polypeptides and DNA (RNA) encoding such chemokine polypeptides and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such chemokine polypeptides for the treatment of leukemia, tumors, chronic infections, autoimmune disease, fibrotic disorders, wound healing and psoriasis. Antagonists against such chemokine polypeptides and their use as a therapeutic to treat rheumatoid arthritis, autoimmune and chronic inflammatory and infective diseases, allergic reactions, prostaglandin-independent fever and bone marrow failure are also disclosed.
Abstract:
Human chemokine Beta-10 polypeptides and DNA (RNA) encoding such chemokine polypeptides and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such chemokine polypeptides for the treatment of leukemia, tumors, chronic infections, autoimmune disease, fibrotic disorders, wound healing and psoriasis. Antagonists against such chemokine polypeptides and their use as a therapeutic to treat rheumatoid arthritis, autoimmune and chronic inflammatory and infective diseases, allergic reactions, prostaglandin-independent fever and bone marrow failure are also disclosed.
Abstract:
The isolation and characterization of nodD-related genes in soybean nodulating Rhizobium japonicum is described. In R. japonicum USDA 191 two such genes have been identified, which although related in structure, have different functional properties. These nodD genes are functionally distinct from each other and from those nodD genes of other strains of Rhizobium that have been isolated and characterized to date. In particular, nodD-r1 has been found to affect nodulation on soybean and to be associated with exopolysaccharide production. In contrast, nodD-r2 affects nodulation on the tropical legume siratro. The coding sequences of both nodD genes are provided. The promoter regions of the nodD genes have also been isolated. The genes described herein, including both structural genes and their promoter regions, can be used in combination with other genetic constructs to enhance the efficiency and competitiveness of nodulation.
Abstract:
The promoter of the nifH gene of the fast-growing Rhizobium japonicum strain USDA 191, has been cloned. Over 4.2 kilobase pairs (kbp) of DNA were sequences (FIG. 1). Sequences encoding nifH and the 5'-end of nifD were identified, as were sequences involved in promoting operon transcription and a nifH ribosome binding site. Use of the nifH promoter to drive transcription in Rhizobium of heterologous structural genes is taught. Useful sequences and plasmids are also disclosed.
Abstract:
The chemical compounds that induce expression of nodulation genes of Bradyrhizobium japonicum strains have been identified. The isoflavones daidzein and genistein were identified as soybean exudate components that induce nod-genes. Other isoflavones, including 7-hydroxyisoflavone, 5,7-dihydroxyisoflavone, biochanin A, formononetin and prunetin, were also found to act as inducers. In addition, several flavonoid compounds including 4',7-dihydroxyflavone, apigenin, kaempferol and coumestrol, were also found to act as inducers. Nodulation inducing compositions and a method for selectively activating the expression of a gene under the control of a soybean exudate inducible promoter in B. japonicum in response to these inducer molecules are described. In addition, soybean inoculating compositions containing the nod-gene inducers and inoculating methods employing these compositions are described.
Abstract translation:已经鉴定了引起日本。Brad of of of of结节基因表达的化合物。 异黄酮黄豆苷原和染料木素被鉴定为诱导结节基因的大豆渗出物成分。 还发现其他异黄酮,包括7-羟基异黄酮,5,7-二羟基异黄酮,鹰嘴豆素A,角叉菜素和杏仁素,作为诱导剂。 此外,还发现了包括4',7-二羟基黄酮,芹菜素,山奈酚和香豆素的几种类黄酮化合物作为诱导剂。 描述了结瘤诱导组合物和用于选择性地激活在这些诱导剂分子响应于日本粳稻的大豆渗出物诱导型启动子控制下的基因表达的方法。 此外,还描述了含有点状基因诱导剂的大豆接种组合物和使用这些组合物的接种方法。
Abstract:
Nodulation regulatory genes (nodD genes) of Bradyrhizobium japonicum strains have been isolated and sequenced. Recombinant DNA molecules and vectors containing these regulatory genes are described. These genes, molecules and vectors are useful in the genetic engineering of Rhizobium and Bradyrhizobium strains. A method for selective expression of structural genes in response to the application of chemical factors which induce B. japonicum nod genes which employs these genes is described.