摘要:
An engine system according to the present invention includes an engine and a fuel system that delivers a liquid fuel and a vapor fuel to the engine. A control module communicates with the fuel system and modulates the vapor fuel delivered to said engine based on a determination of a desired vapor fuel rate and a maximum available vapor fuel rate of the fuel system. The control module determines the desired vapor rate based on a mass rate of liquid fuel being delivered to the engine and a coolant temperature of the engine. The control module determines a vapor density by estimating the vapor density based on a temperature of an intake manifold or alternatively receives a signal from a sensor.
摘要:
A vapor fuel recovery system for fuel tanks is provided. The vapor recovery system comprises: a canister that captures vapor fuel expelled from the fuel tank; a vent valve that controls ventilation of vapor fuel from the fuel tank to the canister; and a vent bypass disposed between the canister and the vent valve that controls the flow of vapor fuel from the fuel tank to the on-board recovery canister when a fuel level in the fuel tank is full. The bypass includes a bypass valve and at least one orifice.
摘要:
A vapor fuel recovery system for fuel tanks is provided. The vapor recovery system comprises: a canister that captures vapor fuel expelled from the fuel tank; a vent valve that controls ventilation of vapor fuel from the fuel tank to the canister; and a vent bypass disposed between the canister and the vent valve that controls the flow of vapor fuel from the fuel tank to the on-board recovery canister when a fuel level in the fuel tank is full. The bypass includes a bypass valve and at least one orifice.
摘要:
A regeneration system includes a first module, a mode selection module and an adsorber regeneration control (ARC) module. The first module monitors at least one of (i) a temperature of a first catalyst of a catalyst assembly in an exhaust system of an engine and (ii) an active catalyst volume of the first catalyst. The mode selection module is configured to select an adsorber regeneration mode and generates a mode signal based on the at least one of the temperature and the active catalyst volume. The ARC module at least one of activates an air pump and cranks the engine to regenerate an adsorber of the catalyst assembly while the engine is deactivated based on the mode signal.
摘要:
An exhaust gas treatment system for an internal combustion engine is provided. The exhaust gas system includes an exhaust gas conduit, a generator, a vehicle electrical system, a primary energy storage device, a rechargeable secondary energy storage device, an electrically heated catalyst (“EHC”) device, and a control module. The primary energy storage device is selectively connected to the generator. The primary energy storage device has a threshold state of charge (“SOC”). The rechargeable secondary energy storage device is selectively connected to the generator and the vehicle electrical system. The EHC device is in fluid communication with the exhaust gas conduit. The EHC device has an electric heater that is selectively connected the generator for receiving energy and a selectively activated catalyst that is heated to a respective light-off temperature.
摘要:
A start-stop system includes a fuel type module that determines a fuel type of a fuel supplied to an engine. A threshold module determines a first threshold based on the fuel type. A temperature module estimates a temperature of a catalyst of an exhaust system of the engine. A comparison module compares the temperature to the first threshold and generates a comparison signal. A power module adjusts power to a heating circuit based on the comparison signal. The heating circuit is configured to increase temperature of the catalyst. The power module adjusts the power to the heating circuit to increase the temperature of the catalyst when the engine is shutdown. An engine control module shuts down and restarts the engine to reduce idling time of the engine.
摘要:
A method of diagnosing an ammonia slip catalyst device is provided. The method includes: computing a delta between a first temperature and a second temperature; evaluating the delta based on an efficiency threshold; and generating a fault notification based on the evaluating.
摘要:
A method of regenerating a particulate filter that includes an electric heater is provided. The method includes determining a location of particulate matter that remains within at least one region of the particulate filter based on a regeneration event being extinguished; and selectively controlling current to a zone of a plurality of zones of the electric heater to initiate a restrike of the regeneration event based on the location of particulate matter.
摘要:
An exhaust gas treatment system for an internal combustion engine is provided. The internal combustion engine has an engine off condition. The exhaust gas treatment system includes particulate filter (“PF”) device in fluid communication with an exhaust gas conduit, an electric heater, a primary energy storage device, a plurality of secondary energy storage devices, and a control module. The PF device has a filter structure for removal of particulates in the exhaust gas, and is selectively regenerated based on an amount of particulates trapped within the filter structure of the PF device. The electric heater is disposed upstream of the filter structure and is selectively energized to provide heat for regeneration of the PF device. The plurality of secondary energy storage devices are selectively connected to the primary energy storage device. The secondary energy storage devices selectively energize the electric heater.
摘要:
In an exemplary embodiment of the invention an exhaust gas after treatment system for an internal combustion engine comprises an exhaust gas conduit configured to transport exhaust gas from the internal combustion engine to exhaust treatment devices of the exhaust gas treatment system. A controller in signal communication with the exhaust gas aftertreatment system is configured to monitor the temperature of a selective catalytic reduction device, wherein the controller is operable to move a valve assembly to an open position when the selective catalytic reduction device is at or above an operating temperature and to move the valve assembly to a closed position when the selective catalytic reduction device is below the operating temperature for entrainment of NOx constituents from the exhaust gas.