摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include providing a gate structure disposed on a substrate comprising at least one recess, wherein a channel region is in a direction, and then forming a compressive layer in the at least one recess.
摘要:
A transistor may be formed of different layers of silicon germanium, a lowest layer having a graded germanium concentration and upper layers having constant germanium concentrations such that the lowest layer is of the form Si1-xGex. The highest layer may be of the form Si1-yGey on the PMOS side. A source and drain may be formed of epitaxial silicon germanium of the form Si1-zGez on the PMOS side. In some embodiments, x is greater than y and z is greater than x in the PMOS device. Thus, a PMOS device may be formed with both uniaxial compressive stress in the channel direction and in-plane biaxial compressive stress. This combination of stress may result in higher mobility and increased device performance in some cases.
摘要翻译:晶体管可以由不同层的硅锗形成,具有梯度锗浓度的最低层和具有恒定锗浓度的上层,使得最底层具有Si 1-x Ge Ge > x SUB>。 在PMOS侧,最高层可以是Si 1-y N y O y的形式。 源极和漏极可以由PMOS侧的Si 1-z N z z z的外延硅锗形成。 在一些实施例中,在PMOS器件中,x大于y且z大于x。 因此,PMOS器件可以在通道方向上具有单轴压应力和面内双轴压应力。 在某些情况下,应力的这种组合可能导致较高的移动性和增加的设备性能。
摘要:
Method and structure to decrease area capacitance within a buried insulator device structure are disclosed. A portion of the substrate layer of a buried insulator structure opposite the insulator layer from the gate is doped with the same doping polarity as the source and drain regions of the device, to provide reduced area capacitance. Such doping may be limited to portions of the substrate which are not below the gate.
摘要:
Embodiments of a silicon-on-insulator (SOI) wafer having an etch stop layer overlying the buried oxide layer, as well as embodiments of a method of making the same, are disclosed. The etch stop layer may comprise silicon nitride, nitrogen-doped silicon dioxide, or silicon oxynitride, as well as some combination of these materials. Other embodiments are described and claimed.
摘要:
A method for enhancing the equilibrium solubility of boron ad indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
摘要:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.
摘要:
A semiconductor substrate having metal oxide semiconductor (MOS) devices, such as an integrated circuit die, is mechanically coupled to a stress structure to apply a stress that improves the performance of at least a portion of the MOS devices on the die.
摘要:
A process includes planarizing a microelectronic device that includes a gate stack and adjacent trench contacts. The process also includes removing a gate spacer at the gate stack and replacing the gate spacer with a dielectric that results in a lowered overlap capacitance between the gate stack and an adjacent embedded trench contact.
摘要:
An apparatus comprising a semiconductor substrate; a conductively doped source or drain (source/drain) region at the surface of the substrate; a raised semiconductor layer deposited over the source/drain region to form a raised source/drain region; a via formed in the raised source/drain region having substantially vertical sidewalls reaching partly or substantially to the source/drain region; and a metal contact filling the via.
摘要:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.