Abstract:
Systems and methods for operating an engine that includes a compression ratio linkage for adjusting engine compression ratio are described. The systems and methods provide different ways of changing a compression ratio of an engine based on forecast or anticipated engine operating conditions. In one example, the forecast or anticipated engine operating conditions may include a forecast or anticipated transmission gear shift.
Abstract:
A first vehicle includes: steering, brakes, memory, sensors, and processor(s) configured to: determine, with the sensors: the first vehicle's acceleration, a second vehicle's acceleration; compute a theoretical collision velocity (TCV) between the first vehicle and the second vehicle based on the accelerations; apply a function or generate a command based on the TCV and a selected coefficient of kinetic friction (COF).
Abstract:
Embodiments for diagnosing a humidity sensor are provided. One example method comprises, responsive to a humidity sensor test cycle, pumping air conditioning and windshield washer gas flows past a humidity sensor, and indicating humidity sensor degradation based on a response of the humidity sensor to the air conditioning and windshield washer gas flows. In this way, degradation of the humidity sensor may be indicated if the humidity sensed by the humidity sensor does not change responsive to the humidity sensor test cycle being initiated.
Abstract:
Methods and systems are provided for diagnosing an intake oxygen sensor. In one example, a method may include indicating degradation of an intake oxygen sensor based on a first time constant of an output of the intake oxygen sensor and a second time constant of an output of a throttle inlet pressure sensor. The method may further include adjusting EGR flow based on the output of the intake oxygen sensor and the output of the throttle inlet pressure sensor when the intake oxygen sensor is not degraded.
Abstract:
A diagnostic method for a capacitive humidity sensor comprising a heater, and a capacitance-sensing element that individually identifies heater, temperature-sensing element, or capacitance-sensing element degradation. By this method, individual elements of the sensor may be replaced or compensated for to allow for further operation.
Abstract:
Methods and systems are provided for estimating exhaust gas recirculation (EGR) flow based on outputs of two different intake oxygen sensors arranged in an engine intake system. In one example, a method may include, when the engine is boosted, adjusting exhaust gas recirculation (EGR) based on a first output of a first oxygen sensor positioned in an intake passage and exposed to EGR gases and a second output of a second oxygen sensor not exposed to EGR gases and exposed to positive crankcase ventilation and purge flow gases. For example, EGR flow may be estimated based on a difference between the first output and the second output.
Abstract:
Methods and systems are provided for accurately learning the zero point of an intake gas oxygen sensor during selected engine no-fueling conditions. The learned zero point is used to infer EGR flow and accordingly adjust EGR valve control. In addition, EGR valve leakage is diagnosed based on the zero point learned during a DFSO adaptation relative to a zero point learned during an idle adaptation.
Abstract:
Methods and systems are provided for accurately learning the zero point of an intake gas oxygen sensor in varying ambient humidity conditions. The learned zero point is corrected based on an estimated ambient humidity to calibrate the reading for dry air conditions or standard humidity conditions. EGR control is performed by comparing the output of an intake oxygen sensor during EGR conditions relative to the humidity-corrected zero point.
Abstract:
Methods and systems are provided for reducing EGR estimation errors during lean engine operating conditions. During lean engine operation, EGR is disabled if the estimated exhaust air-fuel ratio becomes leaner than a lean threshold. The lean threshold is adjusted based on an upper limit of EGR errors that may be tolerated by the engine at a given engine speed and load.
Abstract:
Methods and systems are provided for correcting an EGR rate determined based on an intake manifold oxygen sensor based on an air-fuel ratio of EGR. The output of the sensor is corrected to compensate for extra fuel in rich EGR or extra air in lean EGR and used to reliably estimate the EGR rate. One or more engine operating parameters are adjusted based on an uncorrected output of the sensor.